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Abstract. This paper discusses refinement of programs that may raise and catch
exceptions. We show that exceptions are expressed by a class of predicate trans-
formers built on Arieli and Avron’s four-valued logic and develop a refinement
framework for the four-valued predicate transformers. The resulting framework
enjoys several refinement laws that are useful for stepwise refinement of programs
involving exception handling and partial predicates. We demonstrate some typi-
cal usages of the refinement laws in the proposed framework by a few examples
of program transformation.

1 Introduction

Program refinement has been intensively studied in the framework of refinement cal-
culus [BvW98, Mor94]. Refinement calculus identifies each program with a predicate
transformer and formally justifies refinement of programs by means of the so-called
refinement relation that is induced from the logical entailment. Although refinement
calculus is successfully applied to a certain extension of Dijkstra’s guarded command
language [Dij76], fundamental difficulties arise when we try to extend the language
with exceptions.

First, since exceptional termination is not discriminated from non-termination in the
predicate transformer semantics, a construct that catches exceptions would also catch
non-termination, which is counter-intuitive from the operational point of view. Second,
exceptions are not only raised explicitly by a command but also implicitly by a failure of
computation (e.g., division by zero). In this paper, we argue the latter type of exceptions
that are raised by partial predicates, whose truth value may not be defined. Partiality
poses a foundational issue in developing the theory of refinement based on the classical
logic, in which partiality is ruled out. For example, in Dijkstra’s predicate transformer
semantics, the weakest pre-condition of the conditional statement if p then S else T is
specified by a formula (p ⇒ S(ϕ))∧ (¬p ⇒ T (ϕ)) for any post-condition ϕ, but this
formula is nonsensical in the classical logic when p is undefined.

King and Morgan [KM95] proposed a solution to the first problem by developing
an extension to the traditional predicate transformer semantics for a language in which
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exceptions are explicitly raised by the command exit and are caught by the exception
block construct try S catch T 1. They specified the input of each predicate transformer
by a pair of post-conditions 〈ϕn,ϕe〉, rather than by a single post-condition, where they
write wp(S,ϕn,ϕe) for the weakest pre-condition that guarantees the program S either
to normally terminate establishing ϕn or to exceptionally terminate establishing ϕe. The
weakest pre-conditions for exit and the exception block are given as below:

wp(exit,ϕn,ϕe) = ϕe, wp(try S catch T,ϕn,ϕe) = wp(S,ϕn,wp(T,ϕn,ϕe)).

The intuition behind these specifications are explained as follows. The exit command
immediately causes an exceptional termination. Thus, the command is guaranteed to
terminate (exceptionally) establishing the pre-condition ϕe. The exception block try S
catch T executes S and terminates normally, if no exception is raised; If an exception
is ever raised, the raised exception is caught and then processed by T to resume normal
execution. Therefore, for the exception block to terminate establishing the pair 〈ϕn,ϕe〉
of post-conditions, S is either to normally terminate establishing ϕn or to exceptionally
terminate establishing wp(T,ϕn,ϕe), which guarantees T to terminate establishing the
pair of conditions 〈ϕn,ϕe〉.

In this paper, we propose a refinement calculus for a language that may raise and
catch exceptions, where exceptions can be raised not only by the exit command explic-
itly but also by the evaluation of partial predicates implicitly. For this, we develop our
theory of program refinement in a predicate transformer semantics based on Arieli and
Avron’s four-valued logic [AA96, AA98].

The four-valued predicate transformer semantics can be easily derived from King
and Morgan’s, in the following way. First, we identify each statement S by a predicate
transformer that maps a pair of (classical) predicates 〈ϕn,ϕe〉 to another pair of predi-
cates 〈ϕ′

n,ϕe〉, where ϕ′
n is the weakest pre-condition computed by King and Morgan’s

predicate transformer wp. This definition is intended to guarantee the program S ei-
ther to normally terminate establishing ϕn or to exceptionally terminate establishing ϕe,
whenever the preceding statement normally terminates establishing ϕ′

n or exceptionally
terminates establishing ϕe. Notice that the condition ϕe for exceptional termination is
left unchanged by the transformer because no statement can cancel exceptional termi-
nation caused by the preceding statements.

Next, let us designate a classical predicate by a total function from the set of states
to {0,1}, where 0 and 1 designates the two classical truth values (i.e., false and true,
respectively). Then we identify each pair of predicates 〈ϕn,ϕe〉 by a single four-valued
predicate ϕ such that ϕ(σ) = 〈ϕn(σ),ϕe(σ)〉 for every state σ. The range of the four-
valued predicate is {〈1,0〉,〈0,1〉,〈0,0〉,〈1,1〉}, which we designate by t, f, ⊥, and >,
respectively. This structure with four truth values gives rise to the so called Belnap’s
four-valued logic [Bel77], which has been studied by Ginsberg in the generalized set-
ting of bilattices [Gin88] and was further examined by Fitting [Fit94]. Arieli and Avron
[AA96, AA98] introduced the notion of logical bilattices and developed the correspond-
ing proof system.

The four-valued logic provides a firm logical basis for refining exceptions, as the
original refinement calculus does for refining the guarded command language. The

1 This extends the exception block construct proposed in [KM95] with exception handling.



constructs for exceptions and others as well are concisely specified by the formulas of
four-valued logic. The conditional control via partial predicates can be translated into a
predicate transformer, where the undefinedness of partial predicates is denoted by the
truth value ⊥. The refinement relation is induced from the logical entailment (in the
sense of four-valued logic), i.e., S v T iff S(ϕ) entails T (ϕ) for any post-condition ϕ.

We emphasize that we use the four-valued logic in two different ways. In the pred-
icate transformer semantics, it is used for discriminating the possible termination be-
haviors (either, both, or none of normal termination and exceptional termination), while
in modelling partial predicates, it is used as a many-valued logic that allows undefined-
ness. Although a three-valued logic would be sufficient for the latter purpose, we stick
to the four-valued logic in developing the theory of refinement in order to achieve a
smooth translation of conditional controls via partial predicates into four-valued predi-
cate transformers. For a more neat characterization of partial predicates that adheres to
the operational intuition, we also consider partial predicates in a three-valued sublogic,
whose truth values are confined to f, t, and ⊥. In later sections we exploit the properties
of partial predicates in this three-valued sublogic.

Related work. It seems that there has been no attempt to formulate a predicate trans-
former semantics that gives a unifying account for both exceptions and partial pred-
icates. The exception mechanism was formulated in terms of predicate transformers
in King and Morgan’s refinement calculus [KM95], which was further elaborated in
[Wat02]. Partial predicates are out of their concern, however. (If partial predicates are
ignored at all, the refinement calculus of theirs and that of ours are essentially the same.)

Partial predicates in program logic have been intensively studied in the context of
three-valued logic. For instance, the VDM specification language deals with undefined-
ness in a logic called LPF [Jon86, JM94]; Bono et al. [BK06] formulated a Hoare
logic with a third truth value denoting ‘crash’ of execution. Many other variants of
three-valued logic have been proposed for the sake of a better treatment of partiality
[Owe93, JM94, MB99]. The three-valued logic, however, is not suitable for describing a
predicate transformer semantics for exceptions, because the underlying predicate logic
must be able to discriminate the four different status of termination. Hähnle [Häh05]
discussed that partiality should be dealt by underspecification, rather than by a value
representing undefinedness in a many-valued logic. His argument is, however, about
predicates in specification statements and does not consider exception catching.

Huisman and Jacobs [HJ00] extended Hoare logic to deal with abrupt (exceptional)
termination in Java programming language. They also formulated the mechanism of
catching exceptions in their program logic by representing several different modes of
exceptional termination by different forms of Hoare triple. In contrast to theirs, ours
simply supports a single mode of exceptional termination. This does not imply ours are
less expressive than theirs. Ours can simulate different modes of exceptional termina-
tion by introducing a special variable indicating the mode of termination.

Outline. The rest of the paper is organized as follows. Section 2 introduces the notion
of bilattices and the four-valued logic. Section 3 specifies a set of program statements
as four-valued predicate transformers and we identify the class of predicate transform-
ers. The statements involve exit, exceptions blocks, and conditional controls via partial



predicates. The logical connectives for partial predicates are also discussed. In Sec-
tion 4, we investigate a set of refinement laws that hold for these statements and logical
connectives. In Section 5, we apply the refinement laws to carry out some program
transformations. Finally, Section 6 concludes the paper.

2 The bilattice FOUR and the Four-Valued Logic

2.1 The bilattice FOUR of four truth values

-
≤t

6≤k
(〈0,1〉 =) f

@@⊥ (= 〈0,0〉)¡¡
t (= 〈1,0〉)

@@
> (= 〈1,1〉)

¡¡

Fig. 1. The bilattice of four truth values

Let TWO be the lattice of classical truth val-
ues of 0, 1 with the trivial order 0 < 1. The
bilattice FOUR is a structure obtained by a
product construction TWO ¯ TWO: it con-
sists of four elements 〈1,0〉, 〈0,1〉, 〈0,0〉,
and 〈1,1〉, which are alternatively written t,
f, ⊥, and >, respectively. The bilattice has
two lattice structures simultaneously (see the double Hasse diagram of Figure 1), each
characterized by the partial orders ≤t and ≤k defined below.2

〈x1,y1〉 ≤t 〈x2,y2〉 iff x1 ≤ x2 and y2 ≤ y1,

〈x1,y1〉 ≤k 〈x2,y2〉 iff x1 ≤ x2 and y1 ≤ y2.

The ≤t order (resp. ≤k order) induces the meet ∧ and join ∨ operators (resp. meet
⊗ and join ⊕ operators) The definitions are given below, where u and t stand for the
meet and join in TWO, respectively.

〈x1,y1〉∧ 〈x2,y2〉 = 〈x1 u x2,y1 t y2〉, 〈x1,y1〉∨ 〈x2,y2〉 = 〈x1 t x2,y1 u y2〉,
〈x1,y1〉⊗〈x2,y2〉 = 〈x1 u x2,y1 u y2〉, 〈x1,y1〉⊕〈x2,y2〉 = 〈x1 t x2,y1 t y2〉.

In addition, negation ¬ is defined by ¬〈x,y〉 = 〈y,x〉 as an operator that inverts the
≤t order but keeps the ≤k order.

In FOUR, the operations ∨ and ∧ are De Morgan dual of each other, i.e., ¬(x∨
y) = ¬x∧¬y and ¬(x∧ y) = ¬x∨¬y, while ⊕ and ⊗ are De Morgan self-dual, i.e.,
¬(x⊕y) =¬x⊕¬y and ¬(x⊗y) =¬x⊗¬y. The four values are related with each other
by means of ∨, ∧, ⊕, and ⊗, e.g., ⊥∨ f = ⊥, t⊕ f = >, x∨⊥ = x⊗ t.

The bilattice FOUR is distributive, i.e., the four lattice operations ∧, ∨, ⊗, and ⊕
distribute over each other, e.g., x⊕ (y∧ z) = (x⊕ y)∧ (x⊕ z). A distributive bilattice is
also interlaced, that is, each of the four lattice operations is monotonic with respect to
both ≤t and ≤k, e.g., y ≤t z implies x⊗ y ≤t x⊗ z.

The bilattice structure can be made into a logical bilattice that provides suitable
notions of implications in four-valued logic [AA96]. With D = {t,>} being the set of

2 In the literature, ≤t is often regarded as the degree of truth and ≤k as the amount of infor-
mation. Given a product 〈x,y〉 of classical truth values, x represents the amount of evidence
for an assertion, while y represents the amount of evidence against it. However, one should
refrain from sticking to this particular interpretation, when the four-valued logic is used for
discriminating the possible termination behaviors in the predicate transformer semantics.



designated truth values, which are the values recognized as (at least) known to be true,
the bilattice FOUR is made into a logical bilattice with two implication connectives,
called weak implication ⊃ and strong implication →, which are defined as below:

x ⊃ y ,
{

t (x 6∈ D)
y (otherwise) , x→y , (x ⊃ y)∧ (¬y ⊃ ¬x).

Using strong implication, we define the equivalence x ↔ y by (x→y)∧ (y→x).

2.2 The four-valued predicate logic

We give a four-valued first-order predicate logic, based on the Arieli and Avron’s four-
valued propositional system. (Extension to the predicate logic is straightforward, as
mentioned in [AA96].) We assume the set Value of program values (integers, etc.) and
the set Var of program variables. Let us define State to be the set of total functions from
Var to Value. Given σ ∈ State and X ∈ Var, σ(X) denotes the value that is assigned to
the program variable X in the state σ.

Four-valued predicates, denoted by p, q, etc., are total functions from State to the
four truth values in FOUR. The four-valued predicates form a bilattice, where the two
partial orders ≤t and ≤k and logical connectives ∧, ∨, ⊗, ⊕, ¬, ⊃, →, ↔ are accord-
ingly defined in the pointwise way. That is, for every state σ, p ≤t q (resp. p ≤k q)
holds iff p(σ) ≤t q(σ) (resp. p(σ) ≤k q(σ)), and also logical connectives are defined
by (p∨q)(σ) , p(σ)∨q(σ), (¬p)(σ) , ¬p(σ), etc. In abuse of notations, we will also
denote a constant predicate by the constant itself. That is, we write t for a predicate p
such that p(σ) = t for every state σ; Similarly for f,⊥, and >.

It is easy to verify that the bilattice of the four-valued predicates is distributive,
interlaced, bounded, and complete. (A bilattice is complete, if the two lattices induced
by the partial orders ≤t and ≤k are both complete.) The completeness indicates that
we may also define quantification by means of the infinite join or meet. Given a family
of predicates {p(i) | i ∈ Value}, we define the universal quantification (resp. existential
quantification) over i of predicate p(i) by ∀i.p(i) , V

i p(i) (resp. ∃i.p(i) , W

i p(i))
The above mentioned structure of logical bilattice induces a four-valued predi-

cate logic [AA96], which has a Gentzen-style proof system for sequents of the form
p1, · · · , pn ` q1, · · · ,qm (n,m ≥ 0). The sequent corresponds to the consequence rela-
tion p1, · · · , pn |= q1, · · · ,qm, which means, for any state σ, if pi(σ) ∈ D for all i, then
q j(σ) ∈ D for some j. We say a predicate p is valid iff |= p holds (i.e., p(σ) ∈ D for
any state σ).

Notice that the four-valued logic is a non-classical logic. In particular it is para-
consistent and does not admit the law of the excluded middle, that is, we have neither
` p∨¬p nor p∧¬p ` q. The connectives ⊃, →, and ↔ are a logical implication or
an equivalence in the following sense: |= p ⊃ q iff p |= q; |= p→q iff p ≤t q; |= p ↔ q
iff p = q. Furthermore the logical equivalence ↔ is a congruence: |= p ↔ q implies
|= Θ(p) ↔ Θ(q) for any formula scheme Θ. For further details of the proof system and
logical properties of the four-valued logic, see [AA96, AA98].

Throughout the paper, we follow the convention that the negation and quantifica-
tions bind most tightly, while implications do least tightly and associate to right. We do
not impose any particular precedence between ∨, ∧, ⊕, and ⊗.



Finally, let us introduce some notations that are related to states. A program expres-
sion e is a total function from State to Value. We write σ[X\v] for the state obtained
by updating the value assigned to the program variable X in the state σ by the value v.
Similarly, we write σ[X\e] for an update of variable X with the value of expression e,
that is, σ[X\e(σ)]. Given a four-valued predicate p, we also write p[X\v] (resp. p[X\e])
for the predicate q such that q(σ) = p(σ[X\v]) (resp. q(σ) = p(σ[X\e])) In particular,
a predicate p[X\v] can be recognized as a predicate indexed by v ranging over Value.
In abuse of notations, we may often confuse a program variable X with an expression
e such that e(σ) = σ(X). More generally, we may confuse numerical expressions and
predicates with their pointwise extensions. For example, when we write X + 1 ≥ Y , it
denotes a predicate q such that q(σ) =

(
σ(X)+1 > σ(Y )

)
, where + is the binary inte-

ger addition and ≥ is the binary predicate such that (v ≥ v′) = t if v is greater than or
equal to v′ but (v ≥ v′) = f otherwise.

3 Predicate Transformers and Refinement

3.1 The lattice of predicate transformers

As we have argued earlier, a predicate transformer should be a function that maps a
pair of predicates 〈ϕn,ϕe〉 to another pair 〈ϕ′

n,ϕe〉. We also require every predicate
transformer to be monotonic.

Definition 3.1. A pair of four-valued predicates p and p′ is called an exception match-
ing pair if t⊕ p = t⊕ p′ holds.

A predicate transformer S over four-valued predicates is monotonic if S(ϕ)≤k S(ϕ′)
holds for every exception matching pair ϕ and ϕ′ such that ϕ≤k ϕ′. S is exception stable
if ϕ and S(ϕ) are an exception matching pair, for every ϕ.

Let PTran be the set of predicate transformers of four-valued predicates that are
monotonic and exception stable. Then PTran is made into a bounded complete lattice
as follows.

Theorem 3.1. Let PTran be lattice induced by the partial order v by:

S v T iff S(ϕ) ≤k T (ϕ) for any ϕ,

where the join ⊕ and meet ⊗ operators are a pointwise extension of the corresponding
logical connectives, i.e., (S ⊕ T )(ϕ) = S(ϕ)⊕ T (ϕ) and (S ⊗ T )(ϕ) = S(ϕ)⊗ T (ϕ).
Then PTran is a bounded complete lattice.

The class PTran of predicate transformers are also closed under function composi-
tion, where we write S;T to mean (S;T )(ϕ) = S(T (ϕ)) and intend a sequential execu-
tion of S followed by T . The meet S⊗T and join S⊕T in PTran, called demonic choice
and angelic choice, respectively, are intended a non-deterministic choice between S
and T : The demonic choice represents the least possible non-deterministic execution
that the two statements agree, while the angelic choice represents the greatest possible
one.

In order to verify that a refinement relation S v T holds, we need to show S(ϕ) ≤k
T (ϕ) holds for every ϕ. There are several different ways to verify this.



skip(ϕ) , ϕ (skip)(
X := e

)
(ϕ) , (f⊕ϕ[X\e])⊗ (t⊕ϕ) (assignment)

abort(ϕ) , f⊗ϕ (non-termination)

magic(ϕ) , t⊕ϕ (miracle)

exit(ϕ) , (t⊕ϕ)⊗¬(t⊕ϕ) (exit)

try S catch T ,
(
f⊕S

(
(f⊕ϕ)⊗¬(f⊕T (ϕ))

))
⊗ (t⊕ϕ) (exception handling){

p
}
(ϕ) , ¬(p ⊃>)⊗ϕ (assertion)[

p
]
(ϕ) , (p ⊃⊥)⊕ϕ (assumption)〈

p
〉
(ϕ) , ((p ⊃⊥)⊕ϕ)⊗¬((p ⊃>)⊕ϕ) (conditional exit)

Fig. 2. Four-valued predicate transformers for program statements

Proposition 3.1. For any S,T ∈ PTran and any four-valued predicate ϕ, S(ϕ)≤k T (ϕ)
iff S(ϕ) ≤t T (ϕ) iff |= S(ϕ)→T (ϕ) iff S(ϕ) |= T (ϕ) iff S(ϕ) ` T (ϕ).

Thus we may verify S v T by checking the validity of S(ϕ)→T (ϕ) in the model
of bilattice, which will be effective for the propositional cases. In case quantifiers are
involved, we may resort to a formal proof deriving the sequent of the form S(ϕ) ` T (ϕ).
Further discussions on these alternative ways for validating refinement laws are found
in Appendix A.

3.2 Predicate transformers for basic statements

Let us write 〈ϕn,ϕe〉 for the pair of predicates that a four-valued predicate ϕ encodes as
we have argued in the introduction. When we define a predicate transformer in PTran,
we often need to operate on each component of the pair separately. This can be easily
expressed by the four-valued logic formulas. For example, given four-valued predicates
p and q, we can express the pair 〈pn,qe〉 by the formula (f⊕ p)⊗ (t⊕ q).3 A simple
calculation verifies this as follows:

(f⊕ p)⊗ (t⊕q) = (〈0,1〉⊕〈pn, pe〉)⊗ (〈1,0〉⊕〈qn,qe〉) = 〈pn,1〉⊗〈1,qe〉 = 〈pn,qe〉.

In a similar way, we can verify that (t⊕ p)⊗¬(t⊕ p) calculates 〈pe, pe〉 and (f⊕ p)⊗
¬(f⊕ p) does 〈pn, pn〉.

In Figure 2, we give the definitions of four-valued predicate transformers for a set
of basic statements. (It is easy to verify that all of them are a member of PTran.)

– skip is the idle statement. It is an identity function and hence is a neutral element
for the sequential composition, i.e., skip;S = S;skip = S.

3 There are different ways of expressing the same operation, e.g., (t⊗ p)⊕ (f⊗q).



– X := e is the assignment statement. Given a post-condition 〈ϕn,ϕe〉, it calculates
the weakest pre-condition ϕn[X\e] for normal termination and keeps the condition
ϕe for exceptional termination unchanged. Note that this assignment is total and
deterministic, that is, it always successfully assigns a unique value to the program
variable. We will discuss partial assignments in Section 5.2.

– abort and magic are extremal elements, that is, the least and greatest elements of
PTran, respectively. abort4 represents a statement that is not guaranteed to termi-
nate normally. On the other hand, magic represents a miraculous statement that al-
ways terminates normally, establishing any required post-condition (even falsity).
They are a left-zero element of sequential composition, that is, abort;S = abort
and magic;S = magic.

– exit is the statement that raises an exception. As we discussed earlier, it is char-
acterized by a function that transforms every post-condition 〈ϕn,ϕe〉 into 〈ϕe,ϕe〉.
Again exit is a left-zero element, i.e., exit;S = exit.

– try S catch T is the exception handling statement. The statement calculates the
weakest post-condition for normal termination given by King and Morgan’s wp
function and combines it with the condition for exceptional termination, using the
formulas discussed above.

–
{

p
}

,
[
p
]
, and

〈
p
〉
, which are called assertion, assumption, and conditional exit,

respectively, are primitive forms of conditional controls, which decide how to con-
tinue the execution, depending on the value of the four-valued predicate p, which
is called a guard predicate. They are all equivalent to skip, if the predicate p has a
designated truth value (i.e., either t or >); otherwise,

{
p
}

,
[
p
]
,
〈

p
〉

are equivalent
to abort, magic, exit, respectively.5

The basic statements above can be combined to form a more complicated statement.
A conditional statement if p then S else T , which may raise an exception when a partial
predicate p evaluates to ⊥, can be defined as follows:

if p then S else T ,
〈

p∨¬p
〉
;((

[
p
]
;S)⊗ (

[
p ⊃⊥

]
;T )).

The partiality of predicate p is first tested by the prepended
〈

p∨¬p
〉
, which acts like

exit if p has the value ⊥ but like skip otherwise. Then, a demonic choice is made be-
tween the two branches, each prepended by an assumption statement. (The assumption
statement in the unselected branch becomes magic, which is dismissed by the outer
demonic choice.)

3.3 Logical connectives for partial predicates

In the above definition of conditional statements, we interpret > as an indication of true
on the ground that > is a designated value in the four-valued logic, but this sometimes

4 The name ‘abort’ is historical and is not necessarily adequate in the context of this paper, but
we keep using it for compatibility.

5 Some programming languages provide a feature called ‘assertion’, which is used for excep-
tionally terminating the execution when some critical violation of condition is detected. Note
the difference from the assertion

{
p
}

, which is non-terminating when the test on p is false.
The name ‘assertion’ is thus somewhat confusing but we keep using it for historical reason.



leads to a result that runs counter to the operational intuition. (For example, some of the
laws given in Section 5.1 do not hold for arbitrary four-valued guard predicates.)

In order to obtain a more precise modelling of partial predicates that adheres to the
operational intuition, let us consider consistent predicates [Fit94]: A four-valued predi-
cate p is called consistent if p(σ)∈ {t, f⊥} for any σ. The class of consistent predicates
forms a three-valued sublogic, whose logical operators ∧ and ∨, a.k.a. strong Kleene
connectives, are non-strict operators that avoid ⊥ whenever possible. (For instance, both
f∧⊥ and ⊥∧ f are interpreted f rather than ⊥.) Non-strictness implies that the strong
Kleene connectives cannot be implemented in real programming languages.

We can define logical operators that are found in practical programming languages
in the three-valued sublogic as follows. Following [Fit94], let us write p : q for ((p⊗
t)⊕¬(p⊗ t))⊗q. This derived formula p : q has ⊥ if p has f or ⊥; otherwise, it has the
value of q.

We can define a ‘sequential’ disjunction ~∨ and conjunction ~∧ for any pair of con-
sistent predicates p and q, as follows.

p~∧q , p∧ (p : q) p~∨q , p∨ (¬p : q)

These operators are strict and evaluated sequentially from left to right: it becomes ⊥ as
soon as the left subformula p evaluates to ⊥.

We can also define the weak Kleene connectives ∨w and ∧w as the consensus of the
corresponding two sequential connectives of opposite directions.

p∧w q , (p~∧q)⊗ (q~∧p) p∨w q , (p~∨q)⊗ (q~∨p)

In contrast to the strong Kleene connectives, the value of these connectives is defined
only if both of the subformulas are defined.

The strong Kleene connectives ∧ and ∨, the sequential connectives ~∧ and ~∨, and
also the weak Kleene connectives ∧w and ∨w are all De Morgan dual for each.

4 Refinement Laws for Statements

In the rest of this paper, we assume that guard predicates occurring in control state-
ments are four-valued, unless explicitly stated otherwise. We will indicate wherever a
guard predicate is required to be consistent. We further assume that, unless it is explic-
itly stated otherwise, numerical predicates (which we mentioned in the last paragraph
of Section 2.2) are classical, that is, p(σ) ∈ {t, f} for any σ. The class of classical pred-
icates in the four-valued logic forms a classical sublogic, where the connectives ∨, ∧,
and ¬ substitute for the classical connectives of disjunction, conjunction, and negation,
respectively, and implications ⊃ and → substitute for the material implication. We may
resort to the standard classical logical reasoning in this sublogic.

Let us first examine some basic refinement laws. From the distributivity of logi-
cal connectives, we can derive several distribution laws for demonic choice. The se-
quencing operator admits the left distribution law, i.e., (S1 ⊗S2);T = (S1;T )⊗ (S2;T ).
(The right distribution law does not hold in general, though.) The exception handling
statement also admits a distribution law try S1 ⊗ S2 catch T = (try S1 catch T )⊗
(try S2 catch T ).



By the interlaced property of logical connectives, all the statements introduced in
the previous section are monotonic with respect to refinement of its substatements. For
instance, S1 ⊗T1 v S2 ⊗T2 holds if S1 v S2 and T1 v T2.

4.1 Refinement of conditional controls

The statement skip and the three conditional control statements are ordered by v as
below. {

p
}
v skip v

[
p
]

(4.1)
{

p
}
v

〈
p
〉
v

[
p
]

(4.2)

Further, the assertion (resp. the assumption) is monotonic (resp. anti-monotonic)
with respect to the ≤t order over guard predicates. That is, if p→q is valid (or equiva-
lently, p |= q), we have:{

p
}
v

{
q
}

(4.3)
[
q
]
v

[
p
]

(4.4)

In contrast, the conditional exit has no such particular (anti-)monotonicity property.
Provided that p→q is valid, we have:{

p
}

=
{

p
}

;
{

q
}

=
{

p
}

;
[
q
]
=

{
p
}

;
〈
q
〉

(4.5)[
p
]
=

[
p
]
;
{

q
}

=
[
p
]
;
[
q
]
=

[
p
]
;
〈
q
〉

(4.6)〈
p
〉

=
〈

p
〉
;
{

q
}

=
〈

p
〉
;
[
q
]
=

〈
p
〉
;
〈
q
〉

(4.7)

The following laws indicate that successive conditional control statements of the
same kind can be substituted with a single control statement which combines the guard
formulas in the original statements by either ∧, ~∧, or ∧w.{

p
}

;
{

q
}

=
{

q
}

;
{

p
}

=
{

p∧q
}

=
{

p~∧q
}

=
{

p∧w q
}

(4.8)[
p
]
;
[
q
]
=

[
q
]
;
[
p
]
=

[
p∧q

]
=

[
p~∧q

]
=

[
p∧w q

]
(4.9)〈

p
〉
;
〈
q
〉

=
〈
q
〉
;
〈

p
〉

=
〈

p∧q
〉

=
〈

p~∧q
〉

=
〈

p∧w q
〉

(4.10)

Combining the laws (4.5) through (4.10), we can propagate a copy of a conditional
control statement past one or more successive control statements (of possibly different
kinds), e.g.,

[
p
]
;
{

q
}

;
〈
r
〉

=
[
p
]
;
{

q
}

;
〈
r
〉
;
[
p
]
.

The disjunction in the guard of an assertion or an assumption can be substituted
with an appropriate non-deterministic choice.{

p∨q
}

=
{

p
}
⊕

{
q
}

(4.11)
[
p∨q

]
=

[
p
]
⊗

[
q
]

(4.12)

From the fact that exactly one of the formulas p and p ⊃ ⊥ can have a designated
truth value at once, we obtain the following laws.[

p
]
⊗

[
p ⊃⊥

]
= skip (4.13)[

p
]
;
[
p ⊃⊥

]
=magic (4.14)

〈
p
〉
;
〈

p ⊃⊥
〉

= exit (4.15)



Recall that we have used
〈

p∨¬p
〉

for testing partiality of the predicate p in the
definition of conditional branch statement in Section 3.2. We will later make use of the
following rules in order to exploit the implicit control structure indicated by sequential
and weak Kleene connectives occurring in the test predicate.〈

(p~∧q)∨¬(p~∧q)
〉

=
〈

p∨¬p
〉
;
〈
¬p∨q∨¬q

〉
(4.16)〈

(p~∨q)∨¬(p~∨q)
〉

=
〈

p∨¬p
〉
;
〈

p∨q∨¬q
〉

(4.17)〈
(p∧w q)∨¬(p∧w q)

〉
=

〈
(p∨w q)∨¬(p∨w q)

〉
=

〈
p∨¬p

〉
;
〈
q∨¬q

〉
(4.18)

When the predicate p is classical, the following laws hold.{
p ⊃⊥

}
=

{
¬p

}
(4.19)

[
p ⊃⊥

]
=

[
¬p

]
(4.20)

〈
p∨¬p

〉
= skip (4.21)

4.2 Refinement of exceptions

The following refinement laws hold for exception statements.

exit;S = exit (4.22) try S;
〈

p
〉

catch skip = try S catch skip (4.23)

An interesting subclass of PTran is the one that never raise exceptions. We would
say that a transformer S never raises exceptions under any program context, if ψn =
ψ′

n holds whenever 〈ψn,ϕe〉 = S(〈ϕn,ϕe〉) and 〈ψ′
n,ϕ′

e〉 = S(〈ϕn,ϕ′
e〉). This is formally

specified in terms of four-valued logic as follows.

Definition 4.1. A predicate transformer S ∈ PTran is called non-exceptional, if S(ϕ) =
S(ϕ′) holds whenever f⊕ϕ = f⊕ϕ′.

It is easy to verify that all the statements introduced in Section 3, except for exit and〈
p
〉
, are non-exceptional if so are their substatements.
For any non-exceptional statement S, the following laws hold.

try S catch T = S (4.24) try S;exit catch T = S;T (4.25)

5 Examples of Program Transformation by Stepwise Refinement

We will apply the refinement laws developed in the previous section to transformation
of programs that involve exceptions and partial predicates.

5.1 Translating conjunctions and disjunctions into explicit controls

Programs often contain implicit controls by partial predicates. For example, a single
conditional statement if p~∧q then S else T contains several implicit information for
control: The predicate p~∧q evaluates from left to right; As soon as p evaluates to f, the
else clause is selected; exception is raised as soon as p evaluates to ⊥; q is examined
only if p evaluates to t.



We justify this operational intuition via refinement by showing that the above con-
ditional statement is equivalent to the nested conditional statement if p then (if q then S
else T ) else T . Let us first give a few subsidiary refinement laws.[

p~∧q ⊃⊥
]
=

[
p∧q ⊃⊥

]
=

[
p ⊃⊥

]
⊗

[
q ⊃⊥

]
. (5.1)[

p
]
;
〈
¬p∨q

〉
=

[
p
]
;
〈
q
〉

if p is consistent (5.2)〈
p∨¬p

〉
;
[
p ⊃⊥

]
=

〈
p∨¬p

〉
;
[
p ⊃⊥

]
;
〈
¬p∨q∨¬q

〉
if p is consistent (5.3)

Then we can carry out the following derivation, provided p is consistent.

if p~∧q then S else T =
〈
(p~∧q)∨¬(p~∧q)

〉
;
([

p~∧q
]
;S⊗

[
p~∧q ⊃⊥

]
;T

)
=

〈
p∨¬p

〉
;
〈
¬p∨q∨¬q

〉
;
([

p
]
;
[
q
]
;S⊗

[
p ⊃⊥

]
;T ⊗

[
q ⊃⊥

]
;T )

)
— by (4.16), (4.9), (5.1), and distributivity

=
〈

p∨¬p
〉
;
[
p
]
;
〈
¬p∨q∨¬q

〉
;
([

p
]
;
[
q
]
;S⊗

[
p ⊃⊥

]
;T ⊗

[
q ⊃⊥

]
;T

)
⊗

〈
p∨¬p

〉
;
[
p ⊃⊥

]
;
〈
¬p∨q∨¬q

〉
;
([

p
]
;
[
q
]
;S⊗

[
p ⊃⊥

]
;T ⊗

[
q ⊃⊥

]
;T

)
— by (4.13) and distributivity

=
〈

p∨¬p
〉
;
([

p
]
;
〈
q∨¬q

〉
;
([

q
]
;S⊗

[
q ⊃⊥

]
;T

)
⊗

[
p ⊃⊥

]
;T ⊗

[
p ⊃⊥

]
;
[
q ⊃⊥

]
;T

)
— by (5.2), (5.3), (4.6), (4.7), (4.9), (4.10), (4.14), and distributivity

=
〈

p∨¬p
〉
;
([

p
]
;
〈
q∨¬q

〉
;
([

q
]
;S⊗

[
q ⊃⊥

]
;T

)
⊗

[
p ⊃⊥

]
;T

)
— by (4.9), (4.4)

= if p then (if q then S else T ) else T.

We can also derive a law for the sequential disjunction:

if p~∨q then S else T = if p then S else (if q then S else T ),

where p is consistent. For the weak Kleene connectives, we have similar laws:

if p∧w q then S else T = if p then (if q then S else T ) else
〈
q∨¬q

〉
;T and

if p∨w q then S else T = if p then
〈
q∨¬q

〉
;S else (if q then S else T ),

where p need not be consistent.

5.2 Refining exception handling

Let us apply our refinement laws to a larger program. In the development, we will
make use of the technique that propagates context information via the assertion state-
ment [LvW97, Gro00]. Below we list several non-trivial laws for propagating context
information. {

p
}

;X := e v X := e;
{
∃v.(p[X\v]∧X = e[X\v])

}
(5.4){

p
}

;
[
q
]
v

[
q
]
;
{

p∧q
}

(5.5){
p
}

;
〈
q
〉
v

〈
q
〉
;
{

p∧q
}

(5.6)



{
p
}

; if q then S else T v if q then (
{

p∧q
}

;S) else (
{

p∧ (q ⊃⊥)
}

;T ) (5.7)

if q then (S;
{

p
}
) else (T ;

{
q
}
) v (if q then S else T );

{
p∨q

}
(5.8){

p
}

; try S catch T v try
{

p
}

;S catch T (5.9)

try S;
{

p
}

catch (T ;
{

q
}
) v (try S catch T );

{
p∨q

}
; (5.10)

Let us consider the following program S0 that implements a numerical algorithm.

S0 , X := N; try repeat Y := X ;X := (Y ×Y +N)÷ (2×Y ) until X ≥ Y catch skip.

This program computes the integral value of
√

N for non-negative integer N, based on
the Newton-Raphson method [PTVF07], and assigns the answer to the variable Y . In
the repeat · · · until loop, the integer division operator ÷ may raise an exception due
to division-by-zero, in which case, however, the exception is caught and the execution
normally terminates with a correct answer.

Since PTran is a bounded complete lattice, each loop statement is specified by the
least fixpoint µ.F of a function F ∈ PTran→PTran that is monotonic w.r.t. refinement
order v [BvW98]. The loop statement in S0 is given by the least fixpoint of the function:

F (T ) , Y := X ;X := (Y ×Y +N)÷ (2×Y ); if X ≥ Y then skip else T.

In order to express the partial assignment X := (Y ×Y + N)÷ (2×Y ), which may
raise exception due to division-by-zero, we interpret it by the compound statement〈
¬(Y = 0)

〉
;X := (Y ×Y + N)÷′ (2×Y ), where ÷′ is a total extension of ÷ such that

division by zero yields a fixed constant value (say, 0) instead of being undefined.
In the following derivation, we refine the original program S0, with the assumption

N ≥ 0, into a program that makes no uses of exceptional statements.{
N ≥ 0

}
;S0 v X := N;

{
X = N ∧N ≥ 0

}
; try µ.F catch skip — by (5.4)

v X := N;
(
(try

[
¬(X = 0)

]
;
{

0 < X ≤ N
}

;µ.F catch skip)⊗
(try

[
¬(X = 0) ⊃⊥

]
;
{
¬(X = 0) ⊃⊥

}
;µ.F catch skip)

)
— by (5.9), (4.13), (4.3), (4.1), (4.6), and distributivity.

The left substatement of the demonic choice is refined as follows. (We defer proofs
of some lemmas to Appendix. Lemma B.1 indicates that 0 < X ≤ N is a loop invariant
and lemma B.2 says that the fixpoint operator on PTran preserves non-exceptionality.)

try
[
¬(X = 0)

]
;
{

0 < X ≤ N
}

;µ.F catch skip
v try

[
¬(X = 0)

]
;repeat

{
0 < X ≤ N

}
;Y := X ;X := (Y ×Y +N)÷′ (2×Y )

until X ≥ Y catch skip — by lemma B.1

=
[
¬(X = 0)

]
;repeat

{
0 < X ≤ N

}
;Y := X ;X := (Y ×Y +N)÷′ (2×Y )

until X ≥ Y catch skip — by (4.24) and non-exceptionality
from lemma B.2

=
[
¬(X = 0)

]
;repeat Y := X ;

{
¬(Y = 0)

}
;
〈
¬(Y = 0)

〉
;X := (Y ×Y +N)÷′ (2×Y )

until X ≥ Y — by (5.4), (4.3), and (4.5)

=
[
¬(X = 0)

]
;repeat Y := X ;X := (Y ×Y +N)÷ (2×Y ) until X ≥ Y — by (4.1)



For the other substatement of the choice, we derive:

try
[
¬(X = 0) ⊃⊥

]
;
{
¬(X = 0) ⊃⊥

}
;µ.F catch skip

v try
([
¬(X = 0) ⊃⊥

]
;Y := X ;

{
¬(Y = 0) ⊃⊥

}
;
〈
¬(Y = 0)

〉
;

X := (Y ×Y +N)÷′ (2×Y ); if X ≥ Y then skip else µ.F
)

catch skip
— fixpoint; by (5.4)

= try
[
¬(X = 0) ⊃⊥

]
;Y := X ;

{
¬(Y = 0) ⊃⊥

}
;exit catch skip

— by (4.6), (4.10), and (4.15)

v
[
¬(X = 0) ⊃⊥

]
;Y := X — by (4.25) and (4.1).

Therefore the derivation ends up with:

S0 v X := N;
〈
¬(X = 0)∨¬¬(X = 0)

〉
;(

[
¬(X = 0)

]
;µ.F ⊗

[
¬(X = 0) ⊃⊥

]
;Y := X)

— by (4.21)

= X := N; if ¬(X = 0) then repeat Y := X ;X := (Y ×Y +N)÷ (2×Y ) until X ≥ Y

else Y := X .

6 Conclusion and Future Work

We proposed a refinement calculus for refining exceptions in programs. In order to
model the normal termination as well as the exceptional termination in a single unified
platform, we developed a four-valued predicate transformer semantics, which is based
on Arieli and Avron’s four-valued logic [AA96]. The programming constructs for rais-
ing and catching exceptions can be concisely expressed by the formulas of four-valued
logic in this framework. In particular, we allow partial predicates in the conditional con-
trol statements in order to model exceptions that are raised implicitly when the predicate
in a conditional statement is undefined. The four-valued logic provides a fruitful field
for justifying refinement of programs that involve both explicit and implicit controls by
exceptions.

This paper, with a few deviations, dealt with concrete program statements such
as assignment, (conditional) exit, etc. Future research will concern abstract statements
such as non-deterministic (possibly partial) assignment and general specification state-
ment (which allows the uses of partial pre- and post-conditions) and also the methodol-
ogy for deriving concrete programs from these abstract statements.
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Appendix

A Proving Refinement Laws in Four-Valued Logic

As we have seen in Section 3.1, a refinement relation S v T can be verified either by
showing the validity of S(ϕ)→T (ϕ) or by deriving the sequent of the form S(ϕ) ` T (ϕ)
by a formal proof. The set of inference rules of Arieli and Avron’s four-valued logic
[AA96] is given in Figure 3 for reference purpose.

The former method can be applied to most of the refinement laws given in this paper,
since they are propositional (i.e., the formula S(ϕ)→T (ϕ) is quantifier-free). The task
of checking the validity for propositional formulas can be mechanized.

The latter method can be used for justifying refinement relations in a more human
understandable way. For example, the following derivation proves

{
p
}

;
{

q
}
v

{
p∧q

}
.

(The proof of the other direction of refinement is similar.)

1. p,¬>,q,¬>,ϕ ` p Initial sequent
2. p,¬>,q,¬>,ϕ ` q Initial sequent
3. p,¬>,q,¬>,ϕ ` p∧q 1,2, [` ∧]
4. p,¬>,q,¬>,ϕ ` ¬> Initial sequent
5. p,¬>,q,¬>,ϕ ` ¬(p∧q ⊃>) 3,4, [` ¬ ⊃]
6. ¬(p ⊃>),¬(q ⊃>),ϕ ` ¬(p∧q ⊃>) 5, [¬ ⊃`]
7. ¬(p ⊃>),¬(q ⊃>),ϕ ` ϕ Initial sequent
8. ¬(p ⊃>),¬(q ⊃>),ϕ ` ¬(p∧q ⊃>)⊗ϕ 6,7, [` ⊗]
9. ¬(p ⊃>)⊗¬(q ⊃>)⊗ϕ ` ¬(p∧q ⊃>)⊗ϕ 8, [⊗ `]

In the above, the derivation is shown in a linear format: Each line contains a sequent
and indicates the set of premises and the inference rule that are used for deriving the
sequent.

We may simplify the verification task for a refinement relation that is accompanied
with a side condition by appealing to the logical equivalence. (Recall that the logi-
cal equivalence in four-valued logic is a congruence.) For example, let us show the
law (4.24). Suppose S is non-exceptional. Then it holds that S

(
f ⊕ ((f ⊕ ϕ)⊗¬(f ⊕

T (ϕ))
)

= S(ϕ), because we have:

f⊕
(
f⊕

(
(f⊕ϕ)⊗¬(f⊕T (ϕ))

)
= (f⊕ϕ)⊗¬(t⊕ f⊕T (ϕ)) — distributivity, De Morgan
= f⊕ϕ — by t⊕ f = >.

Hence the following equational reasoning proves the law.(
f⊕S

(
(f⊕ϕ)⊗¬(f⊕T (ϕ))

))
⊗ (t⊕ϕ)

= (f⊕S(ϕ))⊗ (t⊕ϕ) — by the above equation
= (f⊕S(ϕ))⊗ (t⊕S(ϕ)) — S is exception stable
= S(ϕ) — distributivity.



[∧ `]
Γ, p,q ` ∆

Γ, p∧q ` ∆
[` ∧]

Γ ` p,∆ Γ ` q,∆
Γ ` p∧q,∆

[¬∧ `]
Γ,¬p ` ∆ Γ,¬q ` ∆

Γ,¬(p∧q) ` ∆
[` ¬∧]

Γ ` ¬p,¬q,∆
Γ ` ¬(p∧q),∆

[∨ `]
Γ, p ` ∆ Γ,q ` ∆

Γ, p∨q ` ∆
[` ∨]

Γ ` p,q,∆
Γ ` p∨q,∆

[¬∨ `]
Γ,¬p,¬q ` ∆

Γ,¬(p∨q) ` ∆
[` ¬∨]

Γ ` ¬p,∆ Γ ` ¬q,∆
Γ ` ¬(p∨q),∆

[⊗ `]
Γ, p,q ` ∆

Γ, p⊗q ` ∆
[` ⊗]

Γ ` p,∆ Γ ` q,∆
Γ ` p⊗q,∆

[¬⊗ `]
Γ,¬p,¬q ` ∆

Γ,¬(p⊗q) ` ∆
[` ¬⊗]

Γ ` ¬p,∆ Γ ` ¬q,∆
Γ ` ¬(p⊗q),∆

[⊕ `]
Γ, p ` ∆ Γ,q ` ∆

Γ, p⊕q ` ∆
[` ⊕]

Γ ` p,q,∆
Γ ` p⊕q,∆

[¬⊕ `]
Γ,¬p ` ∆ Γ,¬q ` ∆

Γ,¬(p⊕q) ` ∆
[` ¬⊕]

Γ ` ¬p,¬q,∆
Γ ` ¬(p⊕q),∆

[¬¬ `]
Γ, p ` ∆

Γ,¬¬p ` ∆
[` ¬¬]

Γ ` p,∆
Γ ` ¬¬p,∆

[⊃`]
Γ ` p,∆ Γ,q ` ∆

Γ, p ⊃ q ` ∆
[`⊃]

Γ, p ` q,∆
Γ ` p ⊃ q,∆

[¬ ⊃`]
Γ, p,¬q ` ∆

Γ,¬(p ⊃ q) ` ∆
[` ¬ ⊃]

Γ ` p,∆ Γ ` ¬q,∆
Γ ` ¬(p ⊃ q),∆

[∀ `]
Γ, p(e) ` ∆

Γ,∀v.p(v) ` ∆
[` ∀]

Γ ` p(u),∆
Γ ` ∀v.p(v),∆

[¬∀ `]
Γ,¬p(u) ` ∆

Γ,¬∀v.p(v) ` ∆
[` ¬∀]

Γ ` ¬p(e)
Γ ` ¬∀v.p(v),∆

[∃ `]
Γ, p(u) ` ∆

Γ,∃v.p(v) ` ∆
[` ∃]

Γ ` p(e),∆
Γ ` ∃v.p(v),∆

[¬∃ `]
Γ,¬p(e) ` ∆

Γ,¬∃v.p(v) ` ∆
[` ¬∃]

Γ ` ¬p(u)
Γ ` ¬∃v.p(v),∆

[¬t `]
Γ,¬t ` ∆

[` t]
Γ ` t,∆

[f `]
Γ, f ` ∆

[` ¬f]
Γ ` ¬f,∆

[⊥ `]
Γ,⊥ ` ∆

[` >]
Γ ` >,∆

[¬⊥ `]
Γ,¬⊥ ` ∆

[` ¬>]
Γ ` ¬>,∆

Fig. 3. The inference rules [AA96]

When quantifiers are involved in the formula, we need to resort to a formal proof.
For example, the law (5.4) in Section 5.2{

p
}

;X := e v X := e;
{
∃v.(p[X\v]∧X = e[X\v])

}



is formally proved as below, where we write p′ for ¬(∃v.(p[X\v]∧X = e[X\v] ⊃ >)
and indicate the use of equality axiom Γ ` e = e,∆ by [Equal].

1. p,¬> ` p Initial sequent
2. p,¬> ` e = e Axiom [Equal]
3. p,¬> ` p[X\X ]∧ e = e[X\X ] 1, 2, rule [` ∧]
4. p,¬> ` ∃v.(p[X\v]∧ e = e[X\v]) 3, rule [` ∃]
5. p,¬> ` ¬> Initial sequent
6. p,¬> ` ¬(∃v.(p[X\v]∧ e = e[X\v]) ⊃>) 4, 5, rule [` ¬ ⊃]
7. ¬(p ⊃>) ` ¬(∃v.(p[X\v]∧ e = e[X\v]) ⊃>) 6, rule [¬ ⊃`]
8. ¬(p ⊃>),ϕ[X\e] ` ¬(∃v.(p[X\v]∧ e = e[X\v]) ⊃>) 7, weakening
9. ¬(p ⊃>),ϕ[X\e] ` ϕ[X\e] Initial sequent

10. ¬(p ⊃>),ϕ[X\e] ` ¬(∃v.(p[X\v]∧ e = e[X\v]) ⊃>)⊗ϕ[X\e] 8, 9, rule [` ⊗]
11. ¬(p ⊃>), f ` (p′⊗ϕ)[X\e] Axiom [f `]
12. ¬(p ⊃>), f⊕ϕ[X\e] ` (p′⊗ϕ)[X\e] 10, 11, rule [⊕ `]
13. ¬(p ⊃>), f⊕ϕ[X\e], t⊕ϕ ` f,(p′⊗ϕ)[X\e] 12, weakening
14. ¬(p ⊃>), f⊕ϕ[X\e], t⊕ϕ ` f⊕ (p′⊗ϕ)[X\e] 13, rule [` ⊕]
15. ¬(p ⊃>), f⊕ϕ[X\e], t⊕ϕ ` t,(p′⊗ϕ) Axiom [` t]
16. ¬(p ⊃>), f⊕ϕ[X\e], t⊕ϕ ` t⊕ (p′⊗ϕ) 15, rule [` ⊕]
17. ¬(p ⊃>), f⊕ϕ[X\e], t⊕ϕ `

(
f⊕ (p′⊗ϕ)[X\e]

)
⊗

(
t⊕ (p′⊗ϕ)

)
14, 16, rule [` ⊗]

18. ¬(p ⊃>)⊗ (f⊕ϕ[X\e])⊗ (t⊕ϕ) `
(
f⊕ (p′⊗ϕ)[X\e]

)
⊗

(
t⊕ (p′⊗ϕ)

)
17, rule [⊗ `]

B Supplementary Laws for the Development in Section 5.2

Lemma B.1.{
0 < X ≤ N

}
;repeat Y := X ;X := (Y ×Y +N)÷ (2×Y ) until X ≥ Y

v repeat
{

0 < X ≤ N
}

;Y := X ;X := (Y ×Y +N)÷′ (2×Y ) until X ≥ Y

Proof. Let us define F as in Section 5.2 and F ′ as follows.

F ′(T ) ,
{

0 < X ≤ N
}

;Y := X ;X := (Y ×Y +N)÷′ (2×Y ); if X ≥ Y then skip else T.

It is enough to show by transfinite induction that
{

0 < X ≤ N
}

;F α(abort) v µ.F ′

for any ordinal α.
In case α being a non-limit ordinal, suppose α = β+1 for some ordinal β.{
0 < X ≤ N

}
;F β+1(abort)

=
{

0 < X ≤ N
}

;Y := X ;X := (Y ×Y +N)÷ (2×Y ); if X ≥ Y then skip else F β(abort)
v

{
0 < X ≤ N

}
;Y := X ;

{
0 < Y ≤ N ∧Y = X

}
;
〈
¬(Y = 0)

〉
;X := (Y ×Y +N)÷′ (2×Y );

if X ≥ Y then skip else F β(abort) — by (5.4) and (4.3)



=
{

0 < X ≤ N
}

;Y := X ;
{

0 < Y ≤ N ∧Y = X
}

;X := (Y ×Y +N)÷′ (2×Y );

if X ≥ Y then skip else F β(abort) — by (4.5), since 0 < Y ≤ N→¬(Y = 0)

v
{

0 < X ≤ N
}

;Y := X ;X := (Y ×Y +N)÷′ (2×Y );

if X ≥ Y then
{

0 < Y ≤ N ∧X = (Y ×Y +N)÷′ (2×Y )
}

;skip

else
{

0 < Y ≤ N ∧X = (Y ×Y +N)÷′ (2×Y )
}

;F β(abort)
— by (5.4), (5.7), and (4.3)

v
{

0 < X ≤ N
}

;Y := X ;
{
¬(Y = 0)

}
;X := (Y ×Y +N)÷′ (2×Y );

if X ≥ Y then skip else
{

0 < X ≤ N
}

;F β(abort)
— by (4.1) and (4.3) with an elementary number theoretical argument

v
{

0 < X ≤ N
}

;Y := X ;X := (Y ×Y +N)÷′ (2×Y ); if X ≥ Y then skip else µ.F ′

— by induction hypothesis

=µ.F ′ — fixpoint.

If α is a limit ordinal, we have:{
0 < X ≤ N

}
;F α(abort) =

{
0 < X ≤ N

}
;
L

β<α F β(abort)

=
L

β<α
({

0 < X ≤ N
}

;F β(abort)
)

— by distributivity

v
L

β<α µ.F ′ — by induction hypothesis

=µ.F ′.

ut

Lemma B.2. Suppose F ∈ PTran→PTran is a monotonic function. Then, µ.F is non-
exceptional, if F (S) is so for every non-exceptional S.

Proof. We show F α(abort) is non-exceptional for any ordinal α by transfinite in-
duction. Suppose α is a non-limit ordinal such that α = β + 1. By induction hypoth-
esis, F β(abort) is non-exceptional. Therefore F α(abort) = F (F β(abort)) is non-
exceptional. In case α is a limit ordinal, by induction hypothesis, F β(abort) is non-
exceptional for any β < α. This implies, for any ϕ and ϕ′ such that f⊕ ϕ = f⊕ ϕ′,
F α(abort)(ϕ)=

L

β<α F β(abort)(ϕ)=
L

β<α F β(abort)(ϕ′)= F α(abort)(ϕ′). There-
fore the limit F α(abort) is also non-exceptional.


