
Kyoto University

Kyoto-Math 2003-06

Correctness of a Higher-Order Removal
Transformation through a Relational Reasoning

by

Susumu Nishimura

September 2003

K
Department of Mathematics

Faculty of Science
Kyoto University

Kyoto 606-8502, JAPAN

Correctness of a Higher-Order Removal
Transformation through a Relational Reasoning?

Susumu Nishimura

Department of Mathematics, Faculty of Science, Kyoto University
susumu@math.kyoto-u.ac.jp

Abstract. The syntactic logical relations developed by Pitts are applied
to show the correctness of a higher-order removal program transforma-
tion algorithm. The convenient proof method that resorts to the induc-
tion on the structure of programs does not apply because of the circular
references to be introduced by the transformation. Using a variant of
the syntactic logical relations, in which every pair of the transformation
source and target are related, one can break the circularity and make an
inductive proof go through. This demonstrates that the syntactic logical
relations provide a basis of another general proof method for showing
the correctness of program transformations.

1 Introduction

The aim of program transformation is to improve the run-time efficiency, keep-
ing the semantics of the source program. The correctness proof on a program
transformation algorithm is usually done by an inductive argument on the pro-
gram structure, where each induction step is proved by an equational reasoning
on the general syntactic pattern of the corresponding local transformation site.
This inductive proof principle applies to a large class of program transformation
algorithms, but there are certain ones that require a stronger one.

In this paper, we demonstrate that the syntactic logical relations developed
by Pitts [13] can serve as another powerful device for proving the correctness
of program transformations. The logical relations are a type-indexed family of
relations {∆τ}τ between program expressions, where each ∆τ is inductively
defined on the structure of type τ [9]. Pitts developed an operational technique
to construct logical relations over a syntactic domain and called them ‘syntactic’
logical relations. He also showed that the syntactic logical relations coincide with
the observational equivalence relation, i. e., (M, M ′) ∈ ∆τ for some τ iff M and
M ′ show the same evaluation behavior when they are embedded in any context
of a larger program.

The syntactic logical relations provide a firm basis for arguing the observa-
tional equivalence between the transformation source and target. Given a trans-
formation algorithm, we alter the original definition of the syntactic logical re-
lations so that they relate every pair of a source program and its transformation
? This is a longer version of article to appear in Proc. of the First Asian Symposium

on Programming Languages and Systems (APLAS’03).

2

result. That is, we construct the family of relations satisfying

(M,W[[M]]) ∈ ∆τ ,

where M is an arbitrary source expression of type τ and W[[M]] stands for
the transformation result. Then the correctness of the transformation (i. e., the
source program and its transformation result behave similarly) follows from the
coincidence between the logical relations and the observational equivalence.

There are a few attempts to apply a syntactically formulated relational frame-
work to the correctness proof of program transformation. An example is a boxing
transformation on polymorphic values [7, 8]. However, the language considered
does not have fixpoint recursion. The proof technique in the present paper has a
more powerful ability to reason about the observational equivalence in the pres-
ence of fixpoint operators (and hence it is sensitive to termination behavior too).
Johann [6] exploited the parametricity result induced from the syntactic logical
relations to give a formal justification on the shortcut fusion transformation
[4], which is a popular transformation algorithm for removing intermediate data
structures that are produced between producer/consumer function pairs. The
present paper demonstrates that not only the parametricity but also the frame-
work of the syntactic logical relations itself can be a formal basis for arguing the
correctness of program transformations.

We show how the syntactic logical relations can effectively constitute a for-
mal correctness proof, through a non-trivial example of program transformation,
namely, a higher-order removal transformation, which was introduced by the au-
thor as a transformation step for removing higher-order functions in a particular
class of programs [11]. The major difficulty in giving a correctness proof for this
transformation is raised by a circularity to be introduced into the structure of
the target program. The presence of circularity makes it difficult to show the
total correctness of transformation (i. e., the semantics of the whole program is
preserved), since there is no base case to induct on the program structure. Using
logical relations, however, we can break the circularity and make the induction
go through.

Though we employed Pitts’ syntactic logical relations, it would be also pos-
sible to give the correctness proof using logical relations that are, usually done
as such, defined over semantic domains, as Nielsen [10] did in the correctness
proof of the general higher-order removal algorithm (a.k.a. defunctionalization
[14]). However, we prefer Pitts’ syntactic approach, since we can avoid technical
complications that arise from the domain theoretic approach.

The rest of the paper is organized as follows. Section 2 informally presents
the higher-order removal transformation algorithm mentioned above. Section 3
introduces a relational framework for reasoning about observational equivalence
of programs based on the syntactic logical relations. Section 4 gives a formal
correctness proof of the higher-order removal transformation. Finally Section 5
concludes the paper with discussions on future research topics.

3

2 The Higher-Order Removal Transformation by
Example

Deforestation [18] is a program transformation which removes intermediate data
structures that are produced by a function and are immediately consumed by
another function. Though notable refinements and improvements on the de-
forestation algorithm have been proposed [4, 15, 1, 16], it had been long undis-
covered how to deforest functions that are defined by means of accumulating
parameters, which are function arguments passed around throughout a series of
recursive calls, as popularly seen in the tail recursive definition of list reverse
function. A solution, which is based on the framework of macro tree transduc-
ers [2], to this problem was recently proposed by Voigtländer [17]. The author
independently developed another one, which was inspired from the composition
method for attribute grammars [3].

The program transformation considered in this paper is a higher-order re-
moval transformation, which is a vital step in the latter deforestation algorithm.
Let us explain the deforestation process by applying it to an example given in
Figure 1. We use Haskell like syntax [5] extended with record syntax: (l1=M1,
. . . , ln=Mn) expresses a record with labels l1, . . . , ln (n ≥ 0) associated with
expressions M1, . . . , Mn, resp., #l M selects the value associated with the field l
of record M . (l1::τ1, . . . , ln::τn) represents the type of a record whose label
li is each associated with a value of type τi.

The source program to which deforestation process is applied is the function
revflat given in Figure 1(a). It is a composition of a producer function flat and
a consumer function rev, which compute the preorder traversal list of leaves of a
binary tree and the reversal of list elements, respectively. Though the definition
may look verbose, the intention is made clear by removing all the record labels.
For example, the definition of flat is equivalent to the following program:

flat :: T a → [a] → [a]

flat (Node(t,t’)) x0 = flat t (flat t’ x0)

flat (Leaf a) x0 = a:x0

We put distinct record labels as the “tags” to uniquely identify the accumu-
lating parameter and the computation result of each different function; h and l
are used for tagging the accumulating parameter and the computation result of
the function flat, resp.; similarly, k and j for those of the function rev. The
named record labels are more useful for the purpose of unique identification than
the unlabeled tuples.

Figure 2 illustrates the whole deforestation process, which comprises of four
subtransformation steps. First, it applies shortcut fusion [4], which is a standard
deforestation technique, in order to remove intermediate data structures and to
obtain a single recursive function definition. The result is, however, a higher-
order function, and we would like to remove this higher-orderedness. For this,
we further apply two transformations, which perform type conversions on the
higher-order function. They are intended to translate the program into a form

4

data T a = Node (T a,T a) | Leaf a

flat :: T a → (h::[a]) → (l::[a])

flat (Node(t,t’)) x0 = (l=#l (flat t (h=#l (flat t’ (h=#h x0)))))

flat (Leaf a) x0 = (l=a:(#h x0))

rev :: [a] → (k::[a]) → (j::[a])

rev (a:t) x0 = (j=#j (rev t (k=a:(#k x0))))

rev [] x0 = (j=#k x0)

revflat :: T a→ [a]

revflat x = #j (rev (#l (flat x (h=[]))) (k=[]))

Figure 1(a): Source program

rf :: T a → ((hk::[a]) → (hj::[a])) → (lk::[a]) → (lj::[a])

rf (Node(t,t’)) x0 = let x2 = rf t’ (\y2 -> (hj=#hj (x0 (hk=#hk y2)))) in

let x1 = rf t (\y1 -> (hj=#lj (x2 (lk=#hk y1)))) in

\y0 -> (lj=#lj (x1 (lk=#lk y0)))

rf (Leaf a) x0 = \y0 -> (lj=#hj (x0 (hk=a:(#lk y0))))

revflat :: T a → [a]

revflat x = #lj (rf x (\y -> (hj=#hk y)) (lk=[]))

Figure 1(b): Intermediate transformation result

rf’ :: T a → (hj ::[a], lk::[a]) → (hk::[a], lj ::[a])

rf’ (Node(t,t’)) x0 = let x2 = rf’ t’ (hj=#hj x0, lk=#hk x1)

x1 = rf’ t (hj=#lj x2, lk=#lk x0)

in (lj=#lj x1, hk=#hk x2)

rf’ (Leaf a) x0 = (lj=#hj x0, hk=a:(#lk x0))

revflat :: T a → [a]

revflat x = #lj (rf’ x (hj=#hk (rf’ x (hj=Ω, lk=[])), lk=[]))

Figure 1(c): The result of higher-order removal transformation

Fig. 1. Transformation example

flat :: T a → (h::[a]) → (l::[a]) , rev :: [a] → (k::[a]) → (j::[a])

⇓ shortcut fusion
rf :: a T → (h::(k::[a])→(j::[a])) → (l::(k::[a])→(j::[a]))

⇓
rf :: a T → ((h::(k::[a]))→(h::(j::[a]))) → ((l::(k::[a]))→(l::(j::[a])))

⇓
rf :: a T → ((hk::[a])→(hj::[a])) → ((lk::[a])→(lj::[a]))

⇓ higher-order removal
rf’ :: a T → (hj::[a],lk::[a]) → (hk::[a],lj::[a])

Fig. 2. The whole deforestation process

5

that is suitable as the input to the final higher-order removal transformation
step. The intermediate result by these transformations is given in Figure 1(b).
(Since the main concern of this paper is in the application of the syntactic logical
relations to the correctness proof of a program transformation, we do not go any
further on the details of these preceding transformations. The transformation
rules for them can be found in [11].)

We notice that, in Figure 1(b), the result of every recursive call of rf t · · ·
(where t is either the variable t or t’) is bound by a let construct to a variable xi

(i > 0) and also that every let bound variable xi appears, per each constructor
case of the definition of rf, once and only once in the form #lj (xi (lk=M));
We write Mxi

for such expression M . The occurrence of the formal function
argument x0 of rf is also linear and it appears in the form #hj (x0 (hk=Mx0)).

The result of applying the higher-order removal transformation is given in
Figure 1(c). At the type level, this transformation is understood as a type con-
version

from σ1 = ((hk::[a])→ (hj::[a]))→ ((lk::[a])→ (lj::[a]))
to σ2 = (hj::[a],lk::[a])→ (hk::[a],lj::[a]).

Notice that hj and lk, which are the labels of record types occurring at negative
positions in the higher-order function type σ1, constitute the argument type
(hj::[a],lk::[a]) of the first-order function type σ2 and also that hk and lj,
which are the labels of records occurring at positive positions in σ1, constitute
the result type (hk::[a],lj::[a]) of σ2.

W ′[[H :: T]] = W ′[[H]] :: W ′[[T]]
W ′[[#lk y0]] = #lk x0

W ′[[#hk yi]] = #hk xi (1 ≤ i ≤ n)
W ′[[#hj (x0 (hk = Mx0))]] = #hj x0

W ′[[#lj (xi (lk = Mxi))]] = #lj xi (1 ≤ i ≤ n)
W ′[[M]] = M (otherwise)

Fig. 3. Transformation rules for higher-order removal

The higher-order removal transformation on the function rf that respects the
above type conversion is formulated as follows. (The transformation on revflat
is a bit technical, and is discussed later in Section 4.2.) Every let binding site
xi = rf t (\yi -> (hj=Ni)) is rewritten to

xi = rf’ t (hj=W ′[[Ni]], lk=W ′[[Mxi]]) (1)

where W ′[[M]] denotes a transformation on M , which is inductively defined on
the structure of M by the rules given in Figure 3. (We only consider a special
class of expressions and hence the rules in the figure are sufficient for the transfor-
mation.) The linearity in the use of each variable xi is crucial here for uniquely
identifying the expression Mxi . The function value \y0 -> (lj=N0) returned

6

by the function rf in Figure 1(b) is transformed similarly but to (lj=W ′[[N0]],
hk=W ′[[Mx0]]). To complete the transformation, the sequential let bindings are
replaced with a single circular let. The final transformation result is given in
Figure 1(c).

The above transformation process (1) is explained as follows. Every recur-
sive call rf t · · · , whose result is denoted by a variable xi (i > 0), is trans-
formed into rf’ t R, where R is a record of type (hj::[a],lk::[a]) and the
value of R at each record label is drawn from the source program as follows:
hj value is set to Ni, which is taken from the hj field of the record expression
returned by the function \yi → (hj=Ni) (i. e., the second argument to the re-
cursive call); Since every variable xi is bound to the result of a recursive call
rf’ t · · · (of type (hk::[a],lj::[a])) in the target program, every application
site #lj (xi (lk=M)) is rewritten to #lj xi, which just refers to the lj value
returned by the recursive call. Also, every occurrence of expression #hk yi is
rewritten to #hk xi, which just takes the hk value returned by the recursive call.
The transformation for the case i = 0 is similarly explained.

The above explanation only alludes to the validity of the transformation
from the viewpoint of the type correctness and it tells little about the semantic
correctness. It is indeed difficult to give a complete justification on the transfor-
mation in a descriptive way. The source of difficulty is that the transformation
we consider is a non-local transformation, where the result of transformation on a
program expression depends on that of another transformation site (e. g., in the
transformation rule (1), the transformation result refers to that of another site,
namely W ′[[Mxi]]). Even worse, the target program involves a circularity, which
is introduced by the circular let construct, in its program structure. Due to this
circularity, it is even not obvious if the transformation preserves the termination
behavior of the source program.

In order to obtain a complete justification, we would need to resort to a
formal argument based upon a firm mathematical basis. We notice that the
usual inductive argument on the program structure does not work effectively,
since there is no base case to induct on the circular structure. In [17], Voigtländer
faced this problem in the correctness proof of his deforestation algorithm too.
He argued the correctness of each local transformation step only, leaving that of
the entire transformation not formally proved.

In the present paper, we employ the syntactic logical relations [13] as the
mathematical basis for reasoning about the correctness of the higher-order re-
moval program transformation. For this, we reformulate the syntatic logical re-
lations {∆τ}τ so that, every transformation source M and its transformation
result, denoted by W[[M]], are related, i. e., (M,W[[M]]) ∈ ∆τ . This enables
a simultaneous reasoning on different transformation sites: we can induce the
relation between the pair of a transformation source and its result (which in-
cludes references to the results of transformation on other sites) from the type
structure, not resorting to the induction hypothesis on the program structure.

We note that, unlike the usual logical relations, the logical relations formu-
lated as above induce relations between expressions of different types. That is,

7

∆τ is a relation between expressions of type τ and T [[τ]], where T [[·]] is a type
conversion function that replaces every type subexpression σ1 in τ with σ2. We
will discuss the observational equivalence of expressions of different types up
to certain contexts that subsume this type mismatch. (See Section 4.2 for the
details.)

3 Relational Framework for a Functional Language

This section constructs a relational framework for reasoning about observational
equivalence of programs, following the technique developed in [13]. The consid-
ered programming language is a simply typed call-by-name functional language.1

In order to avoid syntactic verbosity, we assume the only recursive data struc-
ture is lists. However, the following results are easily generalized to include other
data structures such as binary trees.

3.1 The simply typed functional language

The set of types and language expressions are defined as follows.

Types τ ::= τ → τ | (l1 : τ1, . . . , ln : τn) | τ list
Expressions M ::= x | λx : τ.M | MM | fix M

| (l1 = M1, . . . , ln = Mn)
| match M of (l1 = x1, . . . , ln = xn) ⇒ M
| nilτ | M ::M | case M of nil ⇒ M,x :: y ⇒ M

Types are either a function type, a record type, or a list type. The set of type
expressions are defined inductively, with unit type () (the record type which has
no record labels) being the base case of induction. We say a type τ is τ ′-free, if
τ has no occurrence of τ ′ as a type subexpression.

The syntax of the language is an extension of the simply typed λ-calculus
with fixpoint operator fix M , records (l1 = M1, . . . , ln = Mn) (n ≥ 0), match-
expression on records, empty list nilτ , list constructor M ::M , and case-branch
on lists. Records are labeled products, where the order of labels is insignificant.
Expression match M of (l1 = x1, . . . , ln = xn) ⇒ M ′ matches a record M
against a pattern (l1 = x1, . . . , ln = xn) and evaluates M ′ with binding each xi

to the corresponding element identified by the label li (the set of labels l1, . . . , ln
is a subset of the labels of the record M).

As usual, a variable occurrence of x in an expression M is said to be free, if x
is not bound by any binding of λ-, match-, and case-constructs in M . We write
fv(M) to denote the set of free variables in M . An expression M is called closed
if fv(M) = ∅. We write M [x1/N1, . . . , xn/Nn] to represent a substitution to
expression M whose free occurrences of variables x1, . . . , xn are simultaneously
replaced with N1, . . . , Nn, resp. We assume any substitution is capture-free, i. e.,
any free variable in Ni’s is not bound by the substitution.
1 We consider a monomorphically typed language since parametricity is not the con-

cern of the present paper. The results in the paper can be easily generalized to a
polymorphically typed language, however.

8

V ⇓ V

F ⇓ λx : τ.M M [x/A] ⇓ V

FA ⇓ V

F (fix F) ⇓ V

fix F ⇓ V

M ⇓ (l1 = M1, . . . , ln = Mn, . . .) M ′[x1/M1, . . . , xn/Mn] ⇓ V

match M of (l1 = x1, . . . , ln = xn) ⇒ M ′ ⇓ V

M ⇓ nilτ M1 ⇓ V

case M of nil ⇒ M1, x :: y ⇒ M2 ⇓ V

M ⇓ H :: T M2[x/H, y/T] ⇓ V

case M of nil ⇒ M1, x :: y ⇒ M2 ⇓ V

Fig. 4. Operational Semantics

Γ (x) = τ

Γ ` x : τ

Γ, x : τ ` M : τ ′

Γ ` λx : τ.M : τ → τ ′
Γ ` F : τ → τ ′ Γ ` A : τ

Γ ` FA : τ ′

Γ ` F : τ → τ
Γ ` fix F : τ

Γ ` M1 : τ1 · · · Γ ` Mn : τn

Γ ` (l1 = M1, . . . , ln = Mn) : (l1 : τ1, . . . , ln : τn)

Γ ` M : (l1 : τ1, . . . , ln : τn, . . .) Γ, x1 : τ1, . . . , xn : τn ` M ′ : τ

Γ ` match M of (l1 = x1, . . . , ln = xn) ⇒ M ′ : τ

Γ ` nilτ : τ list
Γ ` M : τ Γ ` M ′ : τ list

Γ ` M :: M ′ : τ list
Γ ` M : τ list Γ ` M1 : τ ′ Γ, x : τ, y : τ list ` M2 : τ ′

Γ ` case M of nil ⇒ M1, x :: y ⇒ M2 : τ ′

Fig. 5. Typing Rules

The formal (call-by-name) operational semantics is given in Figure 4. The
evaluation relation is expressed by a binary relation M ⇓ V , which reads the
expression M is evaluated to V , where V is a value that belongs to a subset of
expressions defined below.

V ::= λx : τ.M | (l1 = M1, . . . , ln = Mn) | nilτ | M :: M.

The typing rules are defined in the usual way, as given in Figure 5. A typing
judgment is a ternary relation Γ ` M : τ , where Γ is a finite map from variables
to types, called type environment, M is an expression, and τ is a type. We
conventionally write a type environment as x1 : τ1, . . . , xn : τn (n ≥ 0). We
write Exp

(
τ
)

for the set of closed expressions of type τ , that is, Exp
(
τ
)

= {M |
` M : τ}.

In what follows, we assume a few syntactic conventions for brevity.
We write Ωτ for fix (λx : τ.x), which is an expression of type τ that diverges

under any context. The subscript may be omitted occasionally.
The field selection operator #l M is a shorthand for

#l M = match M of (l = z) ⇒ z (z is a fresh variable).

Circular let definitions are expressed by combining fixpoint and record oper-
ators:

let x1 = M1; . . . ; xn = Mn in M

= match (fix (λr : (x1 : τ1, . . . , xn : τn).
match r of (x1=x1, . . . , xn=xn) ⇒ (x1 = M1, . . . , xn = Mn)))

of (x1 = x1, . . . , xn = xn) ⇒ M

9

where each τi is the type of Mi and the variable r and the labels xi
′s are fresh.

3.2 The syntactic logical relation

We construct the syntactic logical relations for the simply typed functional lan-
guage defined above. Most of the proofs, which can be found in Pitts’ original
paper [13], are omitted.

Frame stacks and termination relation We represent evaluation contexts
by frame stacks.

Definition 1 (Frame stacks). The grammar of frame stacks, ranged over by
S, is given by

S ::= Id | S ◦ F,

where F ranges over frames:

F ::= (−M) | (match − of (l1 = x1, . . . , ln = xn) ⇒ M)
| (case − of nil ⇒ M1, x :: y ⇒ M2).

A frame stack is essentially a finite list of frames, with Id being the empty
list representing a null context. We refer to the length of S meaning the number
of frames in S.

Γ ` Id : τ (τ
Γ ` S : τ ′(τ ′′ Γ ` A : τ

Γ ` S ◦ (−A) : τ → τ ′(τ ′′

Γ ` S : τ (τ ′ Γ, x1 : τ1, . . . , xn : τn ` M ′ : τ

Γ ` S ◦ (match − of (l1 = x1, . . . , ln = xn) ⇒ M ′) : (l1 : τ1, . . . , ln : τn, . . .)(τ ′

Γ ` S : τ ′′(τ ′ Γ ` M1 : τ ′′ Γ, x : τ, y : τ list ` M2 : τ ′′

Γ ` S ◦ (case − of nil ⇒ M1, x :: y ⇒ M2) : τ list (τ ′

Fig. 6. Typing rules for frame stacks

We are only interested in well-typed frame stacks. A typing judgment on a
frame stack S is written Γ ` S : τ (τ ′, which reads: S represents a context
which yields, under a type environment Γ , a value of type τ ′ when its hole is
filled with any expression of type τ . A frame stack is well-typed if it has a typing
judgment derived from the rules given in Figure 6.

In the following, we write Stack(τ, τ ′) to denote the set of well-typed frame
stacks {S | ∅ ` S : τ (τ ′}. We also write Stack(τ) when τ ′ = τ ′′ list for
some τ ′′.

The operation of applying a frame stack S ∈ Stack(τ, τ ′) to an expression
M ∈ Exp

(
τ
)
, written SM , is defined as follows, by induction on the length of S:

Id M = M
(S ◦ F)M = S(F [M]),

10

S > M [x/A]

S ◦ (−A) > λx : τ.M

S ◦ (−A) > F

S > FA

S ◦ (− (fix F)) > F

S > fix F

Id > nilτ

S ◦ (match − of (l1 = x1, . . . , ln = xn) ⇒ M ′) > M

S > match M of (l1 = x1, . . . , ln = xn) ⇒ M ′

S > M ′[x1/M1, . . . , xn/Mn]

S ◦ (match − of (l1 = x1, . . . , ln = xn) ⇒ M ′) > (l1 = M1, . . . , ln = Mn, . . .)

Id > nilτ

S ◦ (case − of nil ⇒ M1, x :: y ⇒ M2) > M

S > case M of nil ⇒ M1, x :: y ⇒ M2

S > M1

S ◦ (case − of nil ⇒ M1, x :: y ⇒ M2) > nilτ
S > M2[x/H, y/T]

S ◦ (case − of nil ⇒ M1, x :: y ⇒ M2) > H :: T

Fig. 7. Rules for termination relation

where F [M] represents the syntactic replacement of ‘−’ in F with M .
A binary relation S > M is defined inductively, for every S ∈ Stack(τ) and

M ∈ Exp
(
τ
)
, by the rules given in Figure 7. The relation S > M reads: the

evaluation of M under context S terminates and yields nilτ ′ for some τ ′.

Proposition 1. For all types τ, τ ′, frame stack S ∈ Stack(τ), and expression
M ∈ Exp

(
τ
)
, it holds that

S M ⇓ nilτ ′ iff S > M.

>>-closed relations Let us write Rel
(
τ, τ ′

)
to denote the set of all relations

between well-typed expressions that are subsets of Exp
(
τ
)×Exp

(
τ ′

)
. Similarly,

we write StRel
(
τ, τ ′

)
to denote the set of all relations between stack frames that

are subsets of Stack(τ)× Stack(τ ′).
The duality between expressions and stack frames induces a pair of comple-

ment operators (−)> between Rel
(
τ, τ ′

)
and StRel

(
τ, τ ′

)
.

Definition 2. For any r ∈ Rel
(
τ, τ ′

)
, we define

r> = {(S, S′) | ∀(M,M ′) ∈ r (S > M ⇔ S′ > M ′)}.
Also, for any s ∈ StRel

(
τ, τ ′

)
, we define

s> = {(M,M ′) | ∀(S, S′) ∈ s (S > M ⇔ S′ > M ′)}.
The two (−)> operators together define a Galois connection [12] with respect

to inclusion (i. e., r ⊆ s> ⇔ s ⊆ r>). An important property derived from Galois
connections is that the double-negation operators (−)>> are a closure operator.
That is, they are monotone (r ⊆ r′ ⇒ r>> ⊆ r′>>), inflationary (r ⊆ r>>), and
idempotent (r>> = (r>>)>>).

Definition 3. A relation r is called >>-closed, if r = r>>.

11

Defining logical relation For each type constructor, we define a relation con-
structor, called action.

Definition 4 (Actions). Let r, r′, r1, . . . , rn be relations such that r ∈ Rel
(
τ, τ ′

)
,

r′ ∈ Rel
(
σ, σ′

)
, ri ∈ Rel

(
τi, τ

′
i

)
(i = 1, . . . , n).

We define actions (−) → (−) : Rel
(
τ, τ ′

)×Rel
(
σ, σ′

) → Rel
(
τ → σ, τ ′ → σ′

)
,

(l1 : (−), . . . , ln : (−)) : Rel
(
τ1, τ

′
1

) × · · · × Rel
(
τn, τ ′n

) → Rel((l1 : τ1, . . . , ln :
τn), (l1 : τ ′1, . . . , ln : τ ′n)), and (−)list : Rel

(
τ, τ ′

) → Rel
(
τ list , τ ′ list

)
as fol-

lows.

r → r′ = {(F, F ′) | (FA, F ′A′) ∈ r′ for all (A,A′) ∈ r}
(l1 : r1, . . . , ln : rn) = {((l1 = M1, . . . , ln = Mn), (l1 = M ′

1, . . . , ln = M ′
n)) |

(M1,M
′
1) ∈ r1, . . . , (Mn,M ′

n) ∈ rn}>>
(r)list = νγ.Φr(γ)

In the definition of (r)list, Φr : Rel
(
τ list , τ ′ list

) → Rel
(
τ list , τ ′ list

)
is a func-

tion such that Φr(γ) = ({(nilτ ,nilτ ′)}∪{(H, T), (H ′, T ′) | (H,H ′) ∈ r and (T, T ′) ∈
γ})>>, and νγ.F (γ) denotes a greatest fixpoint of a function F .

The action for list types is well-defined (i. e., the greatest fixpoint exists),
since >>-closure is monotone and hence so is Φr.

Definition 5. The syntactic logical relations {∆τ}τ are inductively defined on
the structure of type τ by the following construction rules:

∆τ→τ ′ = ∆τ → ∆τ ′

∆(l1:τ1,...,ln:τn) = (l1 : ∆τ1
, . . . , ln : ∆τn

)

∆τ list = (∆τ)list

The above definition is carefully designed so that each relation ∆τ is >>-
closed at any type index τ . This, together with the following theorem, justifies
the application of the fixpoint operator to expression M of any type τ → τ .

Theorem 1. [13, Theorem 3.11] Let r ∈ Rel
(
τ, τ ′

)
be a >>-closed relation,

and let F ∈ Exp
(
τ → τ

)
and F ′ ∈ Exp

(
τ ′ → τ ′

)
be expressions such that

(FA, F ′A′) ∈ r for all (A,A′) ∈ r. Then, it holds that (fix F,fix F ′) ∈ r.

This theorem also gives a justification on the relational reasoning of programs
that involve circular let expressions and recursive function definitions, which are
a derivative of fixpoint operator.

The next proposition, which is drawn from [13], shows a bisimilarity property
of the relation on list types.

Proposition 2. The relation ∆τ list is the greatest bisimulation, i. e., ∆τ list is
a greatest relation r that satisfies, whenever (L,L′) ∈ ∆τ list ,

(i) L ⇓ nilτ iff L′ ⇓ nilτ , and

12

(ii) if L ⇓ H :: T then L′ ⇓ H ′ :: T ′ for some H ′ and T ′ such that (H, H ′) ∈ ∆τ

and (T, T ′) ∈ ∆τ list .
(iii) if L′ ⇓ H ′ :: T ′ then L ⇓ H :: T for some H and T such that (H,H ′) ∈ ∆τ

and (T, T ′) ∈ ∆τ list .

3.3 Equational congruence relation and its properties

Let us write M ∼ M ′ to indicate that closed expressions M and M ′ are related
w.r.t. the above logical relations, i. e., (M, M ′) ∈ ∆τ for some type τ . The next
proposition holds for ∼-relation.

Proposition 3. [13, Proposition 4.6] The relation ∼ is a congruence relation,
i. e., it is reflexive, symmetric, transitive, and substitutive (i. e., if fv(M) =
{x1, . . . , xn} and M1 ∼ M ′

1, . . . ,Mn ∼ M ′
n then M [x1/M1, . . . , xn/Mn] ∼ M [x1/M

′
1,

..., xn/M ′
n]).

In order for this proposition to hold for the present language, we need to verify
some properties concerning record types. The proof is given in Appendix.

In addition to the congruence, several equational properties on ∼ can be
derived from the so-called Kleene equivalence.

Proposition 4. [13, Corollary 3.15] Let M, M ′ ∈ Exp
(
τ
)
. M and M ′ are called

Kleene equivalent, written M =kl M ′, if it holds that ∀V.(M ⇓ V ⇔ M ′ ⇓ V).
Kleene equivalence respects ∼ relation, that is, if M1 =kl M ′

1, M2 =kl M ′
2,

and M1 ∼ M2, then M ′
1 ∼ M ′

2.

(λx : τ.M)N ∼ M [x/N] fix F ∼ F (fix F) let B in M ∼ Mθ

#l (l = M, . . .) ∼ M case nilτ of nil ⇒ M1, h :: t ⇒ M2 ∼ M1

case H :: T of nil ⇒ M1, h :: t ⇒ M2 ∼ M2[h/H, t/T]

let B in M ∼ Mθ let B in (λx : τ.M) ∼ λx : τ.(let B in M)

let B in MN ∼ (let B in M)(let B in N) let B in #l M ∼ #l (let B in M)

let B in (l1 = N1, . . . , lm = Nm) ∼ (l1 = let B in N1, . . . , lm = let B in Nm)

let B in H :: T ∼ (let B in H) :: (let B in T)

where B = x1 = M1; · · · ; xn = Mn and θ = [x1/let B in M1, . . . , xn/let B in Mn].

Fig. 8. Derived ∼-relations

Figure 8 gives several ∼-relations derived from Kleene equivalence; ∼-relation
is stable up to β-reductions, fixpoint unfoldings (and therefore circular let un-
foldings), and destructor/constructor pair cancellations (for records and lists);
Also, the circular let constructs commute with several other constructs.

13

Since it has been proved that the syntactic logical relations coincide with the
observational equivalence [13, Theorem 4.15], we hitherto reason about observa-
tional equivalence of expressions up to ∼, using the laws in Proposition 3 and
Figure 8.

We notice that, though the present formalization considers list types only, the
above results are easily generalized to any polynomial data types, e. g. binary
trees. The relations for any polynomial data types can be defined as a greatest
fixpoint of a monotone function, likewise in the definition for list types.

4 The Correctness of Higher-Order Removal
Transformation

Throughout this section, we write U,X, Y to denote disjoint sets of variables
U = {u1, . . . , um}, X = {x0, . . . , xn}, and Y = {y0, . . . , yn} (m, n ≥ 0). We also
fix a list type τ list .

4.1 Definition of the higher-order removal transformation

Our transformation algorithm applies to a class of expressions of the following
form (which is referred to as I, in the rest of the paper):

I = λx0 : (hk : τ list) → (hj : τ list).
let xn = fn (λyn : (hk : τ list).(hj = Nn)) in

· · ·
let x1 = f1 (λy1 : (hk : τ list).(hj = N1)) in
λy0 : (lk : τ list).(lj = N0)

(2)

where f1, . . . , fn (n ≥ 0) are variables of type ((hk : τ list) → (hj : τ list)) →
((lk : τ list) → (lj : τ list)), and N1, . . . , Nn are expressions that belong to
a particular syntactic class. That is, N0 ∈ ExpΓU ,X,Y,π

i ((lj : τ list)) and Ni ∈
ExpΓU ,X,Y,π

i (hj : τ list) (1 ≤ i ≤ n), where the syntactic class designated by
ExpΓU ,X,Y,π

i (τ) is defined as below.

Definition 6. Let ΓU = u1 : τ1, . . . , um : τm be a type environment and π be a
function {0, . . . , n} 7→ {0, . . . , n} such that i > π(i) for every i = 1, . . . , n.

We define a family of set of expressions {ExpΓU ,X,Y,π
i (τ)}0≤i≤n inductively

by the following rules (for brevity, we write Expi(τ) for ExpΓU ,X,Y,π
i (τ)):

h1 M ∈ Expi(τ) whenever ΓU ` M : τ ,
h2 H :: T ∈ Expi(τ list) if H ∈ Expi(τ) and T ∈ Expi(τ list),
h3 #lk y0 ∈ Exp0(τ list),
h4 #hk yi ∈ Expi(τ list) (1 ≤ i ≤ n),
h5 #hj (x0 (hk = Mx0)) ∈ Expπ(0)(τ list), where fv(Mx0) ∩X = ∅ and Mx0 ∈

Expπ(0)(τ list), and
h6 #lj (xi (lk = Mxi)) ∈ Expπ(i)(τ list) (1 ≤ i ≤ n), where fv(Mxi) ∩ X = ∅

and Mxi ∈ Expπ(i)(τ list).

14

For each i, Expi(τ) represents a syntactically restricted set of expressions of
type τ , which possibly contains free variables from U , X, and Y . Each variable
xi ∈ X has to appear in a function application form (Rules h5 and h6. π(i)
refers to the index j of expression Nj from which the variable xi is referenced);
Each variable yi ∈ Y must appear with a field selection operator (h3 and h4).
The above expressions can be combined by the list constructor (h2).

The expression I is further assumed to meet a linearity condition: Each vari-
able xi ∈ X occurs once and only once throughout the expressions N0, . . . , Nn.
(The side condition i > π(i) (i = 1, . . . , n) guarantees that every use of xi is
preceded by the corresponding let binding let xi = · · · .) We intendedly excluded
λ-abstractions from the above rules, in order to prevent each unique occurrence
of a variable xi from being applied to the argument that receives varying denota-
tions. This may happen when a λ-expression that abstracts the xi’s application
is used in different contexts, e. g., (λf. · · · f A1 · · · f A2)(λz.#lj (xi(lk = #lkz))).

W[[λx0 : (hk : τ list) → (hj : τ list).

let xn = fn (λyn : (hk : τ list).(hj = Nn)) in
· · ·

let x1 = f1 (λy1 : (hk : τ list).(hj = N1)) in λy0 : (lk : τ list).(lj = N0)]]

= λx0 : (hj : τ list , lk : τ list).
let xn = f ′n (hj = W ′[[Nn]], lk = W ′[[Mxn]]);

· · ·
x1 = f ′1 (hj = W ′[[N1]], lk = W ′[[Mx1]])

in (lj = W ′[[N0]], hk = W ′[[Mx0]])

where W ′ is the transformation defined in Figure 3, and variables f1, . . . , fn and
f ′1, . . . , f

′
n denote recursive function calls to a substructure of the input data type.

Fig. 9. The higher-order removal transformation

The formal definition of the higher-order removal transformation W is given
in Figure 9. It is easy to verify that this transformation is type correct.

Theorem 2. Let us write σ1 = ((hk : τ list) → (hj : τ list)) → ((lk : τ list) →
(lj : τ list)) and σ2 = (hj : τ list , lk : τ list) → (hk : τ list , lj : τ list). If
ΓU , f1 : σ1, . . . , fn : σ1 ` I : σ1, then ΓU , f ′1 : σ2, . . . , f

′
n : σ2 ` W[[I]] : σ2.

4.2 Correctness of higher-order removal transformation

For the purpose of proving the correctness of the transformation, we reformulate
the syntactic logical relations {∆τ}τ , as we discussed in Section 2. We replace
only the relation indexed by σ1 = ((hk : τ list) → (hj : τ list)) → ((lk : τ list) →
(lj : τ list)) with the relation Θ defined below.

15

Definition 7. Θ ∈ Rel(((hk : τ list) → (hj : τ list)) → ((lk : τ list) → (lj :
τ list)), (hj : τ list , lk : τ list) → (hk : τ list , lj : τ list)) is a relation defined by:

(I, J) ∈ Θ iff

(a) (#hk (J (hj = H, lk = L)),#hk (J (hj = H ′, lk = L′))) ∈ ∆τ list for all
(L,L′) ∈ ∆τ list and H,H ′ ∈ Exp

(
τ list

)
, and

(b)


#lj (I G (lk = L)),

#lj (J (hj = #hj (G′ (hk = #hk
(J (hj = Ωτ list , lk = L′)))),

lk = L′))


 ∈ ∆τ list

for all (G, G′) ∈ (hk : ∆τ list) → (hj : ∆τ list) and (L,L′) ∈ ∆τ list .

We note that the above modification does retain the original relation ∆τ

whenever τ is σ1-free, i. e., τ is free from occurrences of σ1. This implies that
the observational equivalence of programs of σ1-free types can be safely reasoned
up to ∼-relation introduced in Section 3.3. In what follows, we assume τ ranges
over the set of σ1-free types.

We prove that Θ relates the transformation source I and the target W[[I]].

Proposition 5. For every expression I of the form (2), it holds that

(Iθ0,W[[I]]θ′0) ∈ Θ

for any θ0 = [u1/U1, . . . , um/Um, f1/I1, . . . , fn/In] and θ′0 = [u1/U ′
1, . . . , um/U ′

m,
f ′1/J1, . . . , f

′
n/Jn] satisfying (Uk, U ′

k) ∈ ∆ΓU (uk) (1 ≤ k ≤ m) and (Ii, Ji) ∈ Θ

(1 ≤ i ≤ n).

Before giving the proof, let us explain what are the intentions behind the
definition of Θ and how they contribute to establishing the formal proof.

The property (a) of the definition of Θ indicates that the hk value of the
record computed by the transformed program J = W[[I]] depends only on the
lk value of the input record and is not affected at all by the input hj value.
This means the expression H ′ for the hj field can be substituted with any other
well-typed expression. This property is crucially exploited in the proof in order
to break the circularity introduced by the circular let construct: We can suppress
the circular references in the transformed program by virtually replacing certain
variable references with expressions that do not cause circularity.

The property (b) implies that the lj value, which carries the final answer
computed by the original producer/consumer function pair, of the record com-
puted by a single call to I is obtained by using J twice. Computing an lj value by
a call to I with G being the initial accumulating parameter is equal to comput-
ing an lj value by first calling J to obtain the hk value from the input lk value
L′, and then by applying J to the pair of the hj value and the input lk value
L′, where the hj value is obtained by applying G′ (an observationally equivalent
copy of G) to the hk value computed by the first call of J . This justifies the
transformation on #lj (xi (lk = Mxi)) by W ′.

To show the proposition, we need the following lemma, which shows that the
subtransformation W ′ also preserves the observational equivalence of programs
under certain contexts.

16

Lemma 1. Let I1, J1, . . . , In, Jn, U1, U
′
1, . . . , Um, U ′

m be expressions as in Propo-
sition 5. Let us write B,B′ for

B = xn = In(λyn : (hk : τ list).(hj = Nn)) in

· · · in let x1 = I1(λy1 : (hk : τ list).(hj = N1))
B′ = xn = Jn(hj = W ′[[Nn]], lk = W ′[[Mxn]]);

· · · ;x1 = J1(hj = W ′[[N1]], lk = W ′[[Mx1]])

Then, for any i (1 ≤ i ≤ n), (G,G′) ∈ (hk : ∆τ list) → (hj : ∆τ list) and
(L,L′) ∈ ∆τ , it holds that

(a) (Mθηi, let B′θ′H inW ′[[M]]θ′H) ∈ ∆τ for every H ∈ Exp
(
τ list

)
and M ∈

Expi(τ) such that fv(M) ∩X = ∅, and
(b) (let Bθ in Mθηi, let B′θ′ inW ′[[M]]θ′) ∈ ∆τ for every M ∈ Expi(τ).

where

θ = [x0/G, y0/(lk = L), u1/U1, . . . , um/Um],
θ′ = [x0/let x0 = (hj = #hj (G′(hk = #hk (let B′ inW ′[[Mx0]]))),

lk = L′) in x0, u1/U ′
1, . . . , um/U ′

m]

θ′H = [x0/(hj = H, lk = L′), u0/U ′
0, . . . , um/U ′

m],
η0 = [],
ηi = [yi/(hk = #hk (Ji(let B′θ′ in (hj = W ′[[Ni]]θ′, lk = W ′[[Mxi]]θ

′))))].

Proof. We first show property (a) by induction on i and the structure of M . We
only prove the cases where M is an expression corresponding to the cases h3 and
h4 in Definition 6. (The cases h5 and h6 do not matter, since fv(M) ∩X = ∅.)

Case M = #lk y0. Mθηi = #lk (lk = L) ∼ #lk (lk = L′)
∼ let B′θ′H in #lk x0θ

′
H = let B′θ′H inW ′[[M]]θ′H

Case M = #hk yi.

Mθηi = #hk (hk = #hk
(Ji(let B′θ′ in (hj = #hj W ′[[Ni]]θ′, lk = #lkW ′[[Mxi]]θ

′))))
∼ let B′θ′ in #hk (Ji(hj = Ωτ list , lk = #lkW ′[[Mxi]]θ

′)) by Def.7(a)
∼ #hk (Ji(hj = Ωτ list , lk = #lk Mxiθηπ(i))) by I.H.
∼ #hk (Ji(hj = Ωτ list , lk = #lk (let B′θ′H inW ′[[Mxi]]θ

′
H))) by I.H.

∼ #hk (let B′θ′H in (Ji(hj = #hj W ′[[Ni]]θ′H , lk = #lkW ′[[Mxi]]θ
′
H)))

by Def.7(a)
∼ let B′θ′H in #hk xi = let B′θ′H inW ′[[M]]

The proof of property (b) is by induction on i and the structure of M , where
we take the order on i as n ≺ n − 1 ≺ · · · ≺ 0, with n being the base case of
induction. We only prove the cases where M is an expression corresponding to
h3–h6 in Definition 6.

17

Case M = #lk y0. let Bθ in #lk y0θηi = #lk (lk = L) ∼ #lk (lk = L′)
∼ #lk x0θ

′ ∼ let B′θ′in #lk x0θ
′ = let B′θ′inW ′[[M]]θ′

Case M = #hk yi.

let Bθ in Mθηi

= #hk(hk = #hk(Ji(let B′θ′in (hj = #hj W ′[[Ni]]θ′, lk = #lkW ′[[Mxi
]]θ′))))

∼ let B′θ′in #hk xi = let B′θ′inW ′[[M]]θ′

Case M = #hj (x0 (hk = Mx0)).

let Bθ in Mθηi = let Bθ in #hj (G (hk = Mx0θηi))
∼ #hj (G (hk = let Bθ in Mx0θηi))
∼ #hj (G′ (hk = let B′θ′ inW ′[[Mx0]]θ

′)) by I.H.
∼ #hj (hj = #hj (G′ (hk = let B′θ′ inW ′[[Mx0]]θ

′)), lk = L′)
∼ #hj x0θ

′ = let B′θ′ inW ′[[M]]θ′

Case M = #lj (xj (lk = Mxj)) where i = π(j).

let Bθ in Mθηi = let Bθ in #lj (xj (lk = Mxj θηi))
∼ let Bθ in #lj (Ij (λyj : (hk : τ list).(hj = Njθ)) (lk = Mxj θηi))
∼ let Bθ in #lj (Jj (hj = #hj

((λyj : (hk : τ list).(hj = Njθ))
(hk = #hk (Jj (hj = Ωτ list , lk = Mxj θηi)),

lk = Mxj θηi)))) by Def.7(b)

∼ let Bθ in #lj (Jj (hj = #hj
((λyj : (hk : τ list).(hj = Njθ))

(hk = #hk (Jj (let B′θ′ in (hj = W ′[[Nj]]θ′,
lk = W ′[[Mxj]]θ

′))),
lk = Mxj θηi)))) by Def.7(a) and I.H.

∼ let Bθ in #lj (Jj (hj = Njθηj , lk = Mxj θηi))
∼ let B′θ′ in #lj (Jj (hj = W ′[[Nj]]θ′, lk = W ′[[Mxj]]θ

′)) by I.H.
∼ let B′θ′ in #lj xj = let B′θ′ inW ′[[M]]θ′ ut

Proof. (of Proposition 5) Let (G,G′) ∈ (hk : ∆τ list) → (hj : ∆τ list) and
(L,L′) ∈ ∆τ list . We write J for W[[I]].

First we show property (a) of Definition 7. For any H,H ′ ∈ Exp
(
τ list

)
we

have

#hk (Jθ′0(hj = H, lk = L)) ∼ #hk (Jθ′0(hj = H, lk = L′))
∼ let B′θ′H in #hkW ′[[Mx0]]θ

′
H

∼ #hk Mx0θηπ(0) ∼ let B′θ′H′ in #hkW ′[[Mx0]]θ
′
H′ by lemma 1(a), twice

∼ #hk (Jθ′0(hj = H ′, lk = L′)).

18

We derive the property (b) as follows.

#lj (Iθ0 G (lk = L))
∼ #lj (let Bθ in (lj = N0θη0)) ∼ let Bθ in N0θη0

∼ let B′θ′ inW ′[[N0]]θ′ by lemma 1(b)
∼ #lj (Jθ′0 x0θ

′)
∼ #lj (Jθ′0 (hj = #hj (G′(hk = let B′θ′ inW ′[[Mx0]]θ

′)), lk = L′))
∼ #lj (Jθ′0 (hj = #hj (G′(hk = Mx0θηi)), lk = L′)) by lemma 1(a)
∼ #lj (Jθ′0 (hj = #hj (G′(hk = let B′θ′Ωτ list

inW ′[[Mx0]]θ
′
Ωτ list

)),
lk = L′)) by lemma 1(a)

∼ #lj (Jθ′0 (hj = #hj (G′(hk = #hk (Jθ′0 (hj = Ωτ list , lk = L′))),
lk = L′))) ut

The total correctness of the higher-order removal transformations is derived
from the Proposition 5. Suppose we are given the following expressions I and J :

I = λf : τ list → ((hk : τ list) → (hj : τ list)) → ((lk : τ list) → (lj : τ list)).
(λx : τ list . case x of nil ⇒ Inil, h :: t ⇒ Ih::t[f1/f t, . . . , fn/f t])

J = λf ′ : τ list → (hj : τ list , lk : τ list) → (hk : τ list , lj : τ list)
(λx : τ list . case x of nil ⇒W[[Inil]],

h :: t ⇒W[[Ih::t]][f ′1/f ′ t, . . . , f ′n/f ′ t])

where

– Inil is an expression of the form (2) with U = ∅ and n = 0 (i. e., no let-
bindings), and

– Ih::t is an expression of the form (2) with U = {h}.
In the above, f t and f ′ t express recursive calls to the list substructure t. This
is generalized to any polynomial data types: E. g., for the case of binary trees
instead of lists, the variables fi’s (f ′i ’s, resp.) would be substituted with either f t
or f t′ (f ′ t or f ′ t′, resp.), where t and t′ are variables representing the two
different subtrees of a tree node.

In the present paper, we only prove the observational equivalence between
fix I and fix J , when they are applied to lists of finite length. We notice that
the observationally equivalent pairs of expressions of lists of length less than
n is characterized by the relation Φn

∆τ
(∅), where Φr is the function given in

Definition 4. This characterization can be also generalized to any polynomial
data types, with an appropriate definition of Φr.

Theorem 3 (Correctness of transformation). Let I and J be expressions
defined as above. It holds that

((fix I)L, (fix J)L′) ∈ Θ for every (L,L′) ∈ Φn
∆τ

(∅) (n ≥ 1).

19

We prove this theorem by induction on the length of lists, where the induction
principle is justified by the following lemma.

Lemma 2. If (L,L′) ∈ Φn
∆τ

(∅) (n ≥ 1), then the following properties hold.

(i) L ⇓ nilτ iff L′ ⇓ nilτ , and
(ii) if L ⇓ H :: T then L′ ⇓ H ′ :: T ′ for some H ′ and T ′ such that (H, H ′) ∈ ∆τ

and (T, T ′) ∈ Φn−1
∆τ

(∅).
(iii) if L′ ⇓ H ′ :: T ′ then L ⇓ H :: T for some H and T such that (H,H ′) ∈ ∆τ

and (T, T ′) ∈ Φn−1
∆τ

(∅).

In particular when n = 1, if L ⇓ V and L′ ⇓ V ′ then V = V ′ = nilτ .

Proof. The proof is by induction on n. Since Φn
∆τ

(∅) is smaller than the least
fixpoint of Φ∆τ

, it is included by ∆τ list , the greatest fixpoint of Φ∆τ
. So, the

properties in proposition 2 hold for any (L,L′) ∈ Φn
∆τ

(∅) and therefore prop-
erty (i) immediately follows.

Now we show property (ii) and (iii). If n = 1, Φn
∆τ

(∅) = {(nilτ ,nilτ)}>>.
Suppose L ⇓ H :: T . By proposition 2, we have L′ ⇓ H ′ :: T ′ for some H ′ and
T ′. Letting S = case − of nil ⇒ nilτ ′ , h :: t ⇒ nilτ ′ and S′ = case − of nil ⇒
nilτ ′ , h :: t ⇒ Ωτ ′ , we have S > L and S′ 6> L′ but on the other hand S > nilτ
iff S′ > nilτ implies (S, S′) ∈ {(nilτ ,nilτ)}> = (Φn

∆τ
(∅))> , which contradicts

to (L,L′) ∈ Φn
∆τ

(∅). Hence we have L 6⇓ H :: T and similarly for L′. Since L and
L′ never evaluate to a non-empty list, property (ii) and (iii) hold vacuously.

Suppose n > 1. We only show property (ii). The proof for (iii) is similar.
If L ⇓ H :: T , by proposition 2, we have L′ ⇓ H ′ :: T ′ for some H ′ and

T ′ such that (H,H ′) ∈ ∆τ and (T, T ′) ∈ ∆τ list . To show (T, T ′) ∈ Φn−1
∆τ

(∅),
suppose (S0, S

′
0) ∈ (Φn−1

∆τ
(∅))> . Defining S1 = case − of nil ⇒ nilτ ′ , h :: t ⇒

S0 t and S′1 = case − of nil ⇒ nilτ ′ , h :: t ⇒ S′0 t, we will show (S1, S
′
1) ∈

(Φn
∆τ

(∅))> . Since (Φn
∆τ

(∅))> = ({(nilτ ,nilτ)}∪{(H1 :: T1,H
′
1 :: T ′1) | (H1, H

′
1) ∈

∆τ , (T1, T
′
1) ∈ Φn−1

∆τ
(∅)})> , it is enough to show S1 > L1 iff S′1 > L′1 for

every (L1, L
′
1) ∈ {(nilτ ,nilτ)} ∪ {(H1 :: T1,H

′
1 :: T ′1) | (H1,H

′
1) ∈ ∆τ , (T1, T

′
1) ∈

Φn−1
∆τ

(∅)}. For the case L1 = L′1 = nilτ , since S1 L1 ⇓ nilτ and S′1 L′1 ⇓ nilτ
hold by the definition of S1 and S′1, this property follows from proposition 1.
If L1 = H1 :: T1 and L′1 = H ′

1 :: T ′1, then we have S1 > L1 ⇔ Id > S0 T1 ⇔
S0 T1 ⇓ nilτ ′ ⇔ S0 > T1 ⇔ S′0 > T ′1 ⇔ S′0 T ′1 ⇓ nilτ ′ ⇔ Id > S′0 T ′1 ⇔ S′1 > L′1
by proposition 1. Now it follows that S0 > T ⇔ S0 T ⇓ nilτ ′ ⇔ Id > S0 T ⇔
S1 > L ⇔ S′1 > L′ ⇔ Id > S′0 T ′ ⇔ S′0 T ′ ⇓ nilτ ′ ⇔ S′0 > T ′ by proposition 1.
Since S0 and S′0 are arbitrary, this proves (T, T ′) ∈ Φn−1

∆τ
(∅). ut

The proof of Theorem 3 follows below.

Proof. (of Theorem 3) Proof is by induction on n. If both L and L′ diverge, then
so do both (fix I)L and (fix J)L′. Hence ((fix I)L, (fix J)L′) ∈ Θ.

Now we suppose that both L and L′ do not diverge. (Non-divergence of one
implies that of the other, by lemma 2.) If n = 1, then by lemma 2 both L and L′

20

evaluate to nilτ . Then we have (fix I)L ∼ Inil and (fix J)L′ ∼ W[[Inil]]. Since
(Inil,W[[Inil]]) ∈ Θ by proposition 5, it follows that (fix I)L ∼ (fix J)L′.

Suppose n > 1. By lemma 2, we have L ⇓ H :: T and L′ ⇓ H ′ :: T ′ for some
(H, H ′) ∈ ∆τ and (T, T ′) ∈ Φn−1

∆τ
(∅). Then, it holds that

(fix I)L ∼ Ih::t[h/H, f1/(fix I)T, . . . , fn/(fix I)T] and
(fix J)L′ ∼ W[[Ih::t]][h/H ′, f ′1/(fix J)T ′, . . . , f ′n/(fix J)T ′].

Since ((fix I)T, (fix J)T ′) ∈ Θ, by induction hypothesis and proposition 5, we
have (fix I)L ∼ (fix J)L′. ut

Now we show the total correctness of the higher-order removal transformation
using the results in this section. Suppose we are given a recursive definition of
function fix I, a function G of type ((hk : τ list) → (hj : τ list)) → ((lk :
τ list) → (lj : τ list)), and lists L and L′ of type τ list where L is of finite length.
Then, it follows from the property (b) of the relation Θ (Definition 7) that

#lj ((fix I) L G (lk = L′))

is observationally equivalent to

#lj ((fix J)(hj = #hj (G ((fix J)(hj = Ω, lk = L′))), lk = L′)).

Since the two expressions are related up to ∆τ list , they can substitute for each
other under any context.

Applying this to the example in Figure 1 (with regarding fix I as the recursive
function definition of rf and also fix J as that of rf’), we obtain

revflat x = #lj (rf’ x (hj=#hj ((\y -> (hj=#hk y))

(rf’ x (hj=Ω, lk=[])), lk=[])))

The final result in Figure 1(c) follows by a simple calculation. Note that the
diverging expression Ω can be substituted with any well-typed list expression,
since it does not affect the computation at all (as indicated by the property (a)
of Definition 7).

5 Conclusion

We have shown that the framework of syntactic logical relations developed by
Pitts [13] can be a powerful device in proving the correctness of program transfor-
mation. This was evidenced through a concrete example, a higher-order removal
transformation, which is a part of a deforestation algorithm for functions with
accumulating parameters.

We believe that the general proof method presented in this paper can ap-
ply to the correctness proof of other program transformations. In fact, the two
auxiliary transformation processes between the shortcut fusion and the higher-
order removal transformation (in Figure 2) can be justified by a similar proof

21

technique. This fact constitutes the complete correctness proof for the defor-
estation algorithm that was proposed by the author [11], together with a few
more technical elaborations on the syntactic condition to be met by the two
transformations. The author would like to report this result in a near future.

In Theorem 3, we assumed that the inputs are only finite lists (or finite
polynomial data structures, in general). We leave the proof for the inputs of
infinite lists open, as we were not able to prove the relation Θ is >>-closed: If Θ
were proved >>-closed, we would have it as a direct consequence of Theorem 1
without resorting to the induction principle on finite lists. This implies that
the >>-closedness is a key to the question if the composition algorithms for
functions with accumulating parameters are valid for infinite data structures. It
is folklore in the community of macro tree transducers and attribute grammars
that the answer is positive, but there is no formal justification.

The open problem mentioned above raises some technical issues which may
be worth investigating. For the relation Θ to be >>-closed, so must be both of
the two properties in Definition 7. Though each property has its own difficulty
in showing its >>-closedness, that of the property (b) seems more fundamental:
The problem amounts to showing the >>-closedness of a relation ∆τ→τ , which
is defined for some particular type τ by ∆τ→τ = {(F, F ′) | (FA, F ′(F ′A′)) ∈
∆τ for all (A, A′) ∈ ∆τ}. An attempt to show this >>-closedness would be
stuck, since we only consider contexts with a single hole whereas in this case we
need to reason about contexts with two different holes. It would be interesting
to investigate a refinement of Pitts’ proof technique for proving (or disproving)
this >>-closedness.

Acknowledgment I thank Jacques Garrigue for his valuable comments on a
draft version.

References

1. W.-N. Chin. Safe fusion of functional expressions II: Further improvements. Jour-
nal of Functional Programming, 4(4):515–555, 1994.

2. J. Engelfriet and H. Vogler. Macro tree transducers. Journal of Computer and
System Sciences, 31:71–146, 1985.

3. H. Ganzinger and R. Giegerich. Attribute coupled grammars. In Proceedings of
the ACM SIGPLAN ’84 Symposium on Compiler Construction, volume 19(6) of
SIGPLAN Notices, pages 157–170, June 1984.

4. A. Gill, J. Launchbury, and S. Peyton Jones. A short cut to deforestation. In Pro-
ceedings of the Conference on Functional Programming Languages and Computer
Architecture, pages 223–232. ACM Press, June 1993.

5. The Haskell home page. http://www.haskell.org/.

6. P. Johann. Short cut fusion: Proved and improved. In Semantics, Applications, and
Implementation of Program Generation, Second International Workshop: SAIG
2001, volume 2196 of Lecture Notes in Computer Science, pages 47–71. Springer
Verlag, 2001.

22

7. X. Leroy. Unboxed objects and polymorphic typing. In Conference record of the
19th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming,
pages 177–188. ACM Press, 1992.

8. Y. Minamide and J. Garrigue. On the runtime complexity of type-directed un-
boxing. In Proceedings of the third ACM SIGPLAN International Conference on
Functional Programming (ICFP98), pages 1–12. ACM Press, 1998.

9. J. C. Mitchell. Foundations for Programming Languages. Foundation of Computing
Series. The MIT Press, 1996.

10. L. R. Nielsen. A denotational investigation of defunctionalization. Technical Report
RS-00-47, BRICS, 2000.

11. S. Nishimura. Deforesting in accumulating parameters via type-directed trans-
formations. In Informal proceedings of Asian Workshop on Programming Lan-
guages and Systems 2002 (APLAS’02), 2002. electronic version: http://www.math.
kyoto-u.ac.jp/~susumu/papers/aplas02.ps.gz.

12. O. Ore. Galois connexions. Transactions of American Mathematical Society,
55:493–513, 1944.

13. A. Pitts. Parametric polymorphism and operational equivalence. Mathematical
Structures in Computer Science, 10(3):321–359, 2000.

14. J. C. Reynolds. Definitional interpreters for higher-order programming languages.
Higher-Order Symbolic Computation, 11(4):363–397, 1998. Reprint from the Proc.
of the 25th ACM National Conference (1972).

15. T. Sheard and L. Fegaras. A fold for all seasons. In Proceedings 6th ACM SIG-
PLAN/SIGARCH Int. Conf. on Functional Programming Languages and Com-
puter Architecture, FPCA’93, Copenhagen, Denmark, 9–11 June 1993, pages 233–
242. ACM Press, 1993.

16. A. Takano and E. Meijer. Shortcut deforestation in calculational form. In Proceed-
ings of the 7th International Conference on Functional Programming Languages
and Computer Architecture, pages 306–313, La Jolla, California, June 1995. ACM
SIGPLAN/SIGARCH and IFIP WG2.8, ACM Press.

17. J. Voigtländer. Using circular programs to deforest in accumulating parameters.
In K. Asai and W.-N. Chin, editors, ASIAN Symposium on Partial Evaluation and
Semantics-Based Program Manipulation, pages 126–137. ACM Press, 2002.

18. P. Wadler. Deforestation: transforming programs to eliminate trees. Theoretical
Computer Science, 73(2):231–248, June 1990.

Appendix

A Relational Properties of Records

Lemma 3. Let r1, . . . , rn be relations such that ri ∈ Rel
(
τi, τ

′
i

)
(i = 1, . . . , n).

The following properties hold for the action (l1 : r1, . . . , ln : rn).

(i) If (M1,M
′
1) ∈ r1, . . . , (Mn,M ′

n) ∈ rn, then ((l1 = M1, . . . , ln = Mn), (l1 =
M ′

1, . . . , ln = M ′
n)) ∈ (l1 : r1, . . . , ln : rn).

(ii) (l1 : r1, . . . , ln : rn) is >>-closed.
(iii) Suppose we are given a relation r ∈ Rel

(
τ, τ ′

)
, and open expressions N and

N ′ satisfying:

x1 : τ1, . . . , xk : τk ` N : τ, x1 : τ ′1, . . . , xk : τ ′k ` N ′ : τ ′, and
∀(M1,M

′
1) ∈ r1, . . . , (Mk,M ′

k) ∈ rk.
((N [x1/M1, . . . , xk/Mk], N ′[x1/M

′
1, . . . , xk/M ′

k]) ∈ r),

23

for some k (0 ≤ k ≤ n).
If (S, S′) ∈ r> then (S ◦ (match − of (l1 = x1, . . . , lk = xk) ⇒ N), S′ ◦
(match − of (l1 = x1, . . . , lk = xk) ⇒ N ′) ∈ (l1 : r1, . . . , ln : rn)> .

(iv) Let r, N , and N ′ be defined as above. If r is a >>-closed relation and
(M, M ′) ∈ (l1 : r1, . . . , ln : rn), then we have (match M of (l1 = x1, . . . , lk =
xk) ⇒ N,match M ′ of (l1 = x1, . . . , lk = xk) ⇒ N ′) ∈ r.

(v) If (M,M ′) ∈ (l1 : r1, . . . , ln : rn) and ri’s are all >>-closed, then ((l1 =
#l1 M, . . . , ln = #ln M), (l1 = #l1 M ′, . . . , ln = #ln M ′)) ∈ (l1 : r1, . . . , ln :
rn).

Proof. Property (i) and (ii) follow immediately from the definition of the action
for record types and the monotonicity of the >>-closure.

To show (iii), take any (M1,M
′
1) ∈ r1, . . . , (Mn,M ′

n) ∈ rn. Writing ρ = (l1 =
x1, . . . , lk = xk), we have

S ◦ (match − of ρ ⇒ N) > (l1 = M1, . . . , ln = Mn)
⇔ S > N [x1/M1, . . . , xk/Mk]
⇔ S′ > N ′[x1/M

′
1, . . . , xk/M ′

k] since (S, S′) ∈ r

⇔ S′ ◦ (match − of ρ ⇒ N ′) > (l1 = M ′
1, . . . , lk = M ′

k)

Hence it holds that (S ◦ (match − of ρ ⇒ N), S′ ◦ (match − of ρ ⇒
N ′) ∈ {((l1 = M1, . . . , ln = Mn), (l1 = M ′

1, . . . , ln = M ′
n)) | (M1,M

′
1) ∈

r1, . . . , (Mn,M ′
n) ∈ rn}> = (l1 : r1, . . . , ln : rn)>

Let us show property (iv). For any (M,M ′) ∈ (l1 : r1, . . . , ln : rn) and
(S, S′) ∈ r> , we have

S > match M of (l1 = x1, . . . , lk = xk) ⇒ N

⇔ S ◦ (match − of (l1 = x1, . . . , lk = xk) ⇒ N) > M

⇔ S′ ◦ (match − of (l1 = x1, . . . , lk = xk) ⇒ N ′) > M ′ by (iii)
⇔ S′ > match M ′ of (l1 = x1, . . . , lk = xk) ⇒ N ′

Since S and S′ are arbitrary, it holds that

(match M of (l1 = x1, . . . , lk = xk) ⇒ N,
match M ′ of (l1 = x1, . . . , lk = xk) ⇒ N ′) ∈ r>> = r.

Property (v) follows immediately from (iv) and (i).

